Liquid State Machines are brain inspired spiking neural networks (SNNs) with random reservoir connectivity and bio-mimetic neuronal and synaptic models. Reservoir computing networks are proposed as an alternative to deep neural networks to solve temporal classification problems. Previous studies suggest 2nd order (double exponential) synaptic waveform to be crucial for achieving high accuracy for TI-46 spoken digits recognition. The proposal of long-time range (ms) bio-mimetic synaptic waveforms is a challenge to compact and power efficient neuromorphic hardware. In this work, we analyze the role of synaptic orders namely: {\delta} (high output for single time step), 0th (rectangular with a finite pulse width), 1st (exponential fall) and 2nd order (exponential rise and fall) and synaptic timescales on the reservoir output response and on the TI-46 spoken digits classification accuracy under a more comprehensive parameter sweep. We find the optimal operating point to be correlated to an optimal range of spiking activity in the reservoir. Further, the proposed 0th order synapses perform at par with the biologically plausible 2nd order synapses. This is substantial relaxation for circuit designers as synapses are the most abundant components in an in-memory implementation for SNNs. The circuit benefits for both analog and mixed-signal realizations of 0th order synapse are highlighted demonstrating 2-3 orders of savings in area and power consumptions by eliminating Op-Amps and Digital to Analog Converter circuits. This has major implications on a complete neural network implementation with focus on peripheral limitations and algorithmic simplifications to overcome them.
翻译:液态机器是大脑激励型神经网络,具有随机储油层连通性以及生物模拟神经和合成模型。 推荐回收计算网络作为深神经网络的替代, 以解决时间分类问题。 先前的研究显示, 第二级( 双倍指数) 合成波形对于实现 TI-46 口述数字识别的高度精确度至关重要。 提议对储油层输出响应的长期范围( ms) 生物模拟合成波形波形对压缩和电动高效神经变异硬件是一个挑战。 在这项工作中, 我们分析合成订单的作用, 即: {delta} ( 单时间步骤高输出)、 0th( 脉冲宽度有限)、 1st( 加速度下降) 和 2nd 顺序( 加速升降) 至关重要。 提议在储油层输出响应和 TI-46 口音数分类精度定位对更全面的参数扫描中, 我们发现最佳操作点与 sprepimingingal 命令的作用范围是 。 在二号内, 快速流流流流流流流流流流流运行中, 将运行运行运行的运行运行运行运行运行运行运行的运行运行将持续持续持续持续进行大幅推进, 。 。 进一步运行运行运行运行的运行运行的运行运行运行运行运行运行将运行将持续持续进行大幅推进, 。