Many state-of-the-art subspace clustering methods follow a two-step process by first constructing an affinity matrix between data points and then applying spectral clustering to this affinity. Most of the research into these methods focuses on the first step of generating the affinity, which often exploits the self-expressive property of linear subspaces, with little consideration typically given to the spectral clustering step that produces the final clustering. Moreover, existing methods often obtain the final affinity that is used in the spectral clustering step by applying ad-hoc or arbitrarily chosen postprocessing steps to the affinity generated by a self-expressive clustering formulation, which can have a significant impact on the overall clustering performance. In this work, we unify these two steps by learning both a self-expressive representation of the data and an affinity matrix that is well-normalized for spectral clustering. In our proposed models, we constrain the affinity matrix to be doubly stochastic, which results in a principled method for affinity matrix normalization while also exploiting known benefits of doubly stochastic normalization in spectral clustering. We develop a general framework and derive two models: one that jointly learns the self-expressive representation along with the doubly stochastic affinity, and one that sequentially solves for one then the other. Furthermore, we leverage sparsity in the problem to develop a fast active-set method for the sequential solver that enables efficient computation on large datasets. Experiments show that our method achieves state-of-the-art subspace clustering performance on many common datasets in computer vision.


翻译:许多最先进的子空间群集方法遵循一个两步过程,先在数据点之间构建一个亲和矩阵,然后将光谱群集群集集成成。这些方法的研究大多侧重于产生亲和性的第一步,这种亲和性往往利用线性子空间的自我表达属性,而很少考虑光谱群集组组成最后组的光谱群集步骤。此外,现有方法往往获得光谱群集步骤中使用的最后亲和性,方法是将临时或任意选择的后处理步骤应用到自我表达的组合组合组合制形成的亲和性,这可能会对总体组合的绩效产生重大影响。在这项工作中,我们通过学习数据自我表达的自我表达形式和对光谱集集群进行规范化的亲和性矩阵。在我们提议的模型中,我们限制亲和矩阵是两重的,从而形成一种原则性趋近性矩阵,同时利用共同的直交错组合组合组合组合组合组合组合制的已知效益,从而对整体组合群集成一个自我分析的周期性正常化。我们用一个总体框架和两套方法来研究一个直系的自我分析,然后在直交汇式组合中,用一个自我分析一个自我分析一个方法,然后在一个自我分析一个方向组群集中,用一个自我分析一个自我分析一个方法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
148+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
【Google】多模态Transformer视频检索,Multi-modal Transformer
专知会员服务
101+阅读 · 2020年7月22日
斯坦福2020硬课《分布式算法与优化》
专知会员服务
117+阅读 · 2020年5月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
0+阅读 · 2021年6月8日
Arxiv
0+阅读 · 2021年6月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员