Speaker embeddings (x-vectors) extracted from very short segments of speech have recently been shown to give competitive performance in speaker diarization. We generalize this recipe by extracting from each speech segment, in parallel with the x-vector, also a diagonal precision matrix, thus providing a path for the propagation of information about the quality of the speech segment into a PLDA scoring backend. These precisions quantify the uncertainty about what the values of the embeddings might have been if they had been extracted from high quality speech segments. The proposed probabilistic embeddings (x-vectors with precisions) are interfaced with the PLDA model by treating the x-vectors as hidden variables and marginalizing them out. We apply the proposed probabilistic embeddings as input to an agglomerative hierarchical clustering (AHC) algorithm to do diarization in the DIHARD'19 evaluation set. We compute the full PLDA likelihood 'by the book' for each clustering hypothesis that is considered by AHC. We do joint discriminative training of the PLDA parameters and of the probabilistic x-vector extractor. We demonstrate accuracy gains relative to a baseline AHC algorithm, applied to traditional xvectors (without uncertainty), and which uses averaging of binary log-likelihood-ratios, rather than by-the-book scoring.


翻译:从极短部分演讲中提取的演讲器嵌入器(x-victors)最近显示,在演讲器的分层中,我们通过从每个演讲段中提取与x-victor平行的斜体精度矩阵,并同时提取一个对角精度矩阵,将这一配方推广到PLDA的评分后端。这些精确度量化了嵌入器值的不确定性,如果是从高质量演讲段中提取的话,这些嵌入器的值可能是什么。提议的概率嵌入器(具有精确度的x-victors)与PLDA模型相互配合,将X-victors作为隐藏变量对待,将其边缘化。我们采用提议的概率嵌入方法,将语音部分质量信息传播到PLHARD'19的评分盘中。我们为AHCS所考虑的每个组合假设都计算了全PLDA可能性的“根据书”值。我们联合对PLDA参数进行了歧视性培训,而将稳定性嵌进度的逻辑用于X-Basiralalimalal-alalalal-hal-hal-bal-hal-hationalbal-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxbalbalbalbalbalbalbalbalbalbalbalbalbalbalbal-我们使用。

0
下载
关闭预览

相关内容

GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年12月23日
Arxiv
0+阅读 · 2020年12月23日
Arxiv
4+阅读 · 2020年5月25日
VIP会员
相关VIP内容
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员