斯坦福大学Stephen Boyd教授与加州大学Lieven Vandenberghe教授合著的应用线性代数导论:向量、矩阵和最小二乘法《Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares》在2018年由剑桥大学出版社发行,开源书包含19章,473页pdf,这本书的目的是提供一个介绍向量,矩阵,最小二乘方法,应用线性代数的基本主题。目标是让学生通俗易懂,入门学习。让学习者了解在包括数据拟合、机器学习和人工智能,断层、导航、图像处理、金融、和自动控制系统的应用。是一本不可多得好教材。​

Stephen P. Boyd是斯坦福大学电子工程Samsung 教授,信息系统实验室电子工程教授,斯坦福大学电子工程系系主任。他在管理科学与工程系和计算机科学系任职,是计算与数学工程研究所的成员。他目前的研究重点是凸优化在控制、信号处理、机器学习和金融方面的应用。 https://web.stanford.edu/~boyd/

Lieven Vandenberghe,美国加州大学洛杉矶分校电子与计算机工程系和数学系教授

这本书的目的是提供一个介绍向量,矩阵,最小二乘方法,应用线性代数的基本主题。我们的目标是让很少或根本没有接触过线性代数的学生快速学习,以及对如何使用它们在许多应用程序中, 包括数据拟合、机器学习和人工智能, 断层、导航、图像处理、金融、和自动控制系统。

读者所需要的背景知识是熟悉基本的数学符号。我们只在少数地方使用微积分,但它并不是一个关键的角色,也不是一个严格的先决条件。虽然这本书涵盖了许多传统上作为概率和统计的一部分来教授的话题,比如如何将数学模型与数据相匹配,但它并不需要概率和统计方面的知识或背景。

这本书涉及的数学比应用线性代数的典型文本还少。我们只使用线性代数中的一个理论概念,线性无关,和一个计算工具,QR分解;我们处理大多数应用程序的方法只依赖于一种方法,即最小二乘(或某种扩展)。从这个意义上说,我们的目标是知识经济:仅用一些基本的数学思想、概念和方法,我们就涵盖了许多应用。然而,我们所提供的数学是完整的,因为我们仔细地证明了每一个数学命题。然而,与大多数介绍性的线性代数文本不同,我们描述了许多应用程序,包括一些通常被认为是高级主题的应用程序,如文档分类、控制、状态估计和组合优化。

这本书分为三部分。第一部分向读者介绍向量,以及各种向量运算和函数,如加法、内积、距离和角度。我们还将描述如何在应用程序中使用向量来表示文档中的字数、时间序列、病人的属性、产品的销售、音轨、图像或投资组合。第二部分对矩阵也做了同样的处理,最终以矩阵的逆和求解线性方程的方法结束。第三部分,关于最小二乘,是回报,至少在应用方面。我们展示了近似求解一组超定方程的简单而自然的思想,以及对这一基本思想的一些扩展,可以用来解决许多实际问题。

成为VIP会员查看完整内容
0
139

相关内容

凸优化作为一个数学问题已经被研究了一个多世纪,并在许多应用领域的实践中应用了大约半个世纪,包括控制、金融、信号处理、数据挖掘和机器学习。本文主要研究凸优化的几个问题,以及机器学习的具体应用。

成为VIP会员查看完整内容
0
77

机器学习使用来自各种数学领域的工具。本文件试图提供一个概括性的数学背景,需要在入门类的机器学习,这是在加州大学伯克利分校被称为CS 189/289A。

https://people.eecs.berkeley.edu/~jrs/189/

我们的假设是读者已经熟悉多变量微积分和线性代数的基本概念(达到UCB数学53/54的水平)。我们强调,本文档不是对必备类的替代。这里介绍的大多数主题涉及的很少;我们打算给出一个概述,并指出感兴趣的读者更全面的理解进一步的细节。

请注意,本文档关注的是机器学习的数学背景,而不是机器学习本身。我们将不讨论特定的机器学习模型或算法,除非可能顺便强调一个数学概念的相关性。

这份文件的早期版本不包括校样。我们已经开始在一些证据中加入一些比较简短并且有助于理解的证据。这些证明不是cs189的必要背景,但可以用来加深读者的理解。

成为VIP会员查看完整内容
0
124

本文采用了一种独特的机器学习方法,它包含了对进行研究、开发产品、修补和玩耍所必需的所有基本概念的全新的、直观的、但又严谨的描述。通过优先考虑几何直观,算法思维,和实际应用的学科,包括计算机视觉,自然语言处理,经济学,神经科学,推荐系统,物理,和生物学,这篇文章为读者提供了一个清晰的理解基础材料以及实际工具需要解决现实世界的问题。通过深入的Python和基于MATLAB/ octave的计算练习,以及对前沿数值优化技术的完整处理,这是学生的基本资源,也是从事机器学习、计算机科学、电子工程、信号处理和数值优化的研究人员和实践者的理想参考。其他资源包括补充讨论主题、代码演示和练习,可以在官方教材网站mlrefined.com上找到。

  • 建立在清晰的几何直觉上的讲述
  • 最先进的数值优化技术的独特处理
  • 逻辑回归和支持向量机的融合介绍
  • 将功能设计和学习作为主要主题
  • 通过函数逼近的视角,先进主题的无与伦比的呈现
  • 深度神经网络和核方法的细化描述
成为VIP会员查看完整内容
0
99

本书概述了现代数据科学重要的数学和数值基础。特别是,它涵盖了信号和图像处理(傅立叶、小波及其在去噪和压缩方面的应用)、成像科学(反问题、稀疏性、压缩感知)和机器学习(线性回归、逻辑分类、深度学习)的基础知识。重点是对方法学工具(特别是线性算子、非线性逼近、凸优化、最优传输)的数学上合理的阐述,以及如何将它们映射到高效的计算算法。

https://mathematical-tours.github.io/book/

它应该作为数据科学的数字导览的数学伴侣,它展示了Matlab/Python/Julia/R对这里所涵盖的所有概念的详细实现。

成为VIP会员查看完整内容
0
192

本文是由Terence Parr 和Jeremy Howard撰写的《深度学习的矩阵运算》论文。我们知道,深度学习是基于线性代数和微积分的,反向传播也离不开求导和矩阵运算,因此了解深度学习内部的数学原理也至关重要。

1.介绍

2.向量演算和偏导简介

3.矩阵演算

  • 雅可比定律

  • 多元微分

  • 向量

  • 链式法则

4.损失函数求导

5.矩阵演算参考

6.符号

7.资源链接

本文从简单函数求导到多元函数求偏导,再到矩阵的微积分运算,逐层深入,引导我们探索深度学习背后的学习规则与数学基础。本文试图解释理解深度神经网络的训练所需要的所有矩阵演算,本文适用于对神经网络基础有所了解的人,不过即使没有数学基础的同学也不要紧,作者提供了相关数学知识链接。在文末作者提供的参考部分,总结了这里讨论的所有关键矩阵演算规则和术语。

成为VIP会员查看完整内容
0
116

简介: 宾夕法尼亚大学计算逻辑研究院Jean Gallier等人近期在之前发布的书的基础上进行修改,于2019年10月24日发布了一本长达753页的书籍,详细地列出了对机器学习等领域有重要意义的数学理论基础知识。近年来,计算机视觉、机器人、机器学习和数据科学一直是推动技术重大进步的一些关键领域。任何看过上述领域的论文或书籍的人都会被一个奇怪的术语所困扰,这些术语涉及核主成分分析、岭回归、lasso回归、支持向量机(SVM)、拉格朗日乘子、KKT条件等奇怪的术语。但人们很快就会发现,行话背后总是伴随着一个新的领域,背后隐藏着许多经典的“线性代数和优化理论技术”。我们面临的主要挑战是:要从机器学习、计算机视觉等方面了解和使用工具,必须具备线性代数和优化理论的坚实背景。

本书的主要目标是介绍线性代数和优化理论的基本原理,同时考虑到机器学习、机器人和计算机视觉的应用。这项工作由两部分组成,第一个是线性代数,第二个优化理论和应用,尤其是机器学习。 第一部分涉及经典的线性代数,包括主分解和Jordan形式。除了讨论标准的一些主题外,我们还讨论了一些对应用很重要的主题。这些主题包括:

  • Haar基和相应的Haar小波
  • Hadamard矩阵
  • Affine maps
  • 规范和矩阵规范
  • 向量空间中序列和序列的收敛性。矩阵指数e_A及其基本性质
  • The group of unit quaternions, SU(2), and the representation of rotations in SO(3) by unit quaternions
  • 代数与谱图论简介
  • SVD和伪逆的应用,尤其是主成分分析
  • 特征值和特征向量的计算方法,重点是QR算法

另外有比平常更详细介绍的四个主题:

  • Duality
  • Dual norms
  • The geometry of the orthogonal groups O(n) and SO(n), and of the unitary groups U(n) and SU(n)
  • 谱理论

作者介绍: Jean Gallier是宾夕法尼亚大学的教授,拥有法国和美国双国籍,1978年取得博士后学位就从事于计算机领域工作,发表过许多研究论文和书籍,其中《Computational geometry》、《Low-dimensional topology》、《Discrete mathematics》、《Discrete mathematics》等书籍的作者就是Jean Gallier

成为VIP会员查看完整内容
面向计算机视觉、机器人和机器学习的线性代数.pdf
0
80

由Marc Peter Deisenroth,A Aldo Faisal和Cheng Soon Ong撰写的《机器学习数学基础》“Mathematics for Machine Learning” 最新版417页pdf版本已经放出,作者表示撰写这本书旨在激励人们学习数学概念。这本书并不打算涵盖前沿的机器学习技术,因为已经有很多书这样做了。相反,作者的目标是通过该书提供阅读其他书籍所需的数学基础。这本书分为两部分:数学基础知识和使用数学基础知识进行机器学习算法示例。值得初学者收藏和学习!

目录

Part I: 数据基础

  • Introduction and Motivation
  • Linear Algebra
  • Analytic Geometry
  • Matrix Decompositions
  • Vector Calculus
  • Probability and Distribution
  • Continuous Optimization

Part II: 机器学习问题

  • When Models Meet Data
  • Linear Regression
  • Dimensionality Reduction with Principal Component Analysis
  • Density Estimation with Gaussian Mixture Models
  • Classification with Support Vector Machines
成为VIP会员查看完整内容
0
106
小贴士
相关资讯
那些值得推荐和收藏的线性代数学习资源
【资源】这本开放书籍帮你扫清通往ML的数学绊脚石
机器学习算法与Python学习
37+阅读 · 2018年10月28日
机器学习实践指南
Linux中国
3+阅读 · 2017年9月28日
【基础数学】- 01
遇见数学
5+阅读 · 2017年7月25日
相关论文
Use the Force, Luke! Learning to Predict Physical Forces by Simulating Effects
Kiana Ehsani,Shubham Tulsiani,Saurabh Gupta,Ali Farhadi,Abhinav Gupta
4+阅读 · 2020年3月26日
Object-centric Forward Modeling for Model Predictive Control
Yufei Ye,Dhiraj Gandhi,Abhinav Gupta,Shubham Tulsiani
4+阅读 · 2019年10月8日
Zhiqing Sun,Zhi-Hong Deng,Jian-Yun Nie,Jian Tang
8+阅读 · 2019年2月26日
PPO-CMA: Proximal Policy Optimization with Covariance Matrix Adaptation
Perttu Hämäläinen,Amin Babadi,Xiaoxiao Ma,Jaakko Lehtinen
3+阅读 · 2018年12月18日
Peifeng Wang,Jialong Han,Chenliang Li,Rong Pan
6+阅读 · 2018年11月4日
Yao Quanming,Wang Mengshuo,Jair Escalante Hugo,Guyon Isabelle,Hu Yi-Qi,Li Yu-Feng,Tu Wei-Wei,Yang Qiang,Yu Yang
6+阅读 · 2018年10月31日
Satoru Katsumata,Yukio Matsumura,Hayahide Yamagishi,Mamoru Komachi
3+阅读 · 2018年5月28日
Wenhao Jiang,Lin Ma,Xinpeng Chen,Hanwang Zhang,Wei Liu
6+阅读 · 2018年4月3日
Armand Joulin,Edouard Grave,Piotr Bojanowski,Maximilian Nickel,Tomas Mikolov
3+阅读 · 2017年10月30日
Top