We marshall the arguments for preferring Bayesian hypothesis testing and confidence sets to frequentist ones. We define admissible solutions to inference problems, noting that Bayesian solutions are admissible. We give seven weaker common-sense criteria for solutions to inference problems, all failed by these frequentist methods but satisfied by any admissible method. We note that pseudo-Bayesian methods made by handicapping Bayesian methods to satisfy criteria on type I error rate makes them frequentist not Bayesian in nature. We give five examples showing the differences between Bayesian and frequentist methods; the first requiring little calculus, the second showing in abstract what is wrong with these frequentist methods, the third to illustrate information conservation, the fourth to show that the same problems arise in everyday statistical problems, and the fifth to illustrate how on some real-life inference problems Bayesian methods require less data than fixed sample-size (resp. pseudo-Bayesian) frequentist hypothesis testing by factors exceeding 3000 (resp 300) without recourse to informative priors. To address the issue of different parties with opposing interests reaching agreement on a prior, we illustrate the beneficial effects of a Bayesian "Let the data decide" policy both on results under a wide variety of conditions and on motivation to reach a common prior by consent. We show that in general the frequentist confidence level contains less relevant Shannon information than the Bayesian posterior, and give an example where no deterministic frequentist critical regions give any relevant information even though the Bayesian posterior contains up to the maximum possible amount. In contrast use of the Bayesian prior allows construction of non-deterministic critical regions for which the Bayesian posterior can be recovered from the frequentist confidence.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员