Goemans and Rothvoss (SODA'14) gave a framework for solving problems in time $enc(P)^{2^{O(N)}}enc(Q)^{O(1)}$ that can be described as finding a point in $\text{int.cone}(P\cap\mathbb{Z}^N)\cap Q$, where $P,Q\subset\mathbb{R}^N$ are (bounded) polyhedra. This framework can be used to solve various scheduling problems, but the encoding length $enc(P)$ usually involves large parameters like the makespan. We describe three tools to improve the framework by Goemans and Rothvoss: Problem-specific preprocessing, LP relaxation techniques and a new bound for the number of vertices of the integer hull. In particular, applied to the classical scheduling problem $P||C_{\max}$, these tools each improve the running time from $(\log(C_{\max}))^{2^{O(d)}} enc(I)^{O(1)}$ to the possibly much better $(\log(p_{\max}))^{2^{O(d)}}enc(I)^{O(1)}$. Here, $p_{\max}$ is the largest processing time, $d$ is the number of different processing times, $C_{\max}$ is the makespan and $enc(I)$ is the encoding length of the instance. This running time is FPT w.r.t. parameter $d$ if $p_{\max}$ is given in unary. We obtain similar results for various other problems. Moreover, we show how a balancing result by Govzmann et al. can be used to speed up an additive approximation scheme by Buchem et al. (ICALP'21) in the high-multiplicity setting. On the complexity side, we use reductions from the literature to provide new parameterized lower bounds for $P||C_{\max}$ and to show that the improved running time of the additive approximation algorithm is probably optimal. Finally, we show that the big open question asked by Mnich and van Bevern (Comput. Oper. Res. '18) whether $P||C_{\max}$ is FPT w.r.t. the number of job types $d$ has the same answer as the question whether $Q||C_{\max}$ is FPT w.r.t. the number of job and machine types $d+\tau$ (all in high-multiplicity encoding). The same holds for objective $C_{\min}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员