We present a novel approach for photorealistic robot simulation that integrates 3D Gaussian Splatting as a drop-in renderer within vectorized physics simulators such as IsaacGym. This enables unprecedented speed -- exceeding 100,000 steps per second on consumer GPUs -- while maintaining high visual fidelity, which we showcase across diverse tasks. We additionally demonstrate its applicability in a sim-to-real robotics setting. Beyond depth-based sensing, our results highlight how rich visual semantics improve navigation and decision-making, such as avoiding undesirable regions. We further showcase the ease of incorporating thousands of environments from iPhone scans, large-scale scene datasets (e.g., GrandTour, ARKit), and outputs from generative video models like Veo, enabling rapid creation of realistic training worlds. This work bridges high-throughput simulation and high-fidelity perception, advancing scalable and generalizable robot learning. All code and data will be open-sourced for the community to build upon. Videos, code, and data available at https://escontrela.me/gauss_gym/.
翻译:我们提出了一种新颖的逼真机器人仿真方法,该方法将3D高斯泼溅作为一种即插即用的渲染器集成到矢量化的物理仿真器(如IsaacGym)中。这实现了前所未有的速度——在消费级GPU上每秒超过100,000步——同时保持了高视觉保真度,我们通过多样化的任务展示了这一点。我们还证明了其在仿真到现实机器人应用场景中的适用性。除了基于深度的感知,我们的结果强调了丰富的视觉语义如何改善导航和决策,例如避开不良区域。我们进一步展示了如何轻松整合来自iPhone扫描的数千个环境、大规模场景数据集(例如GrandTour、ARKit)以及生成式视频模型(如Veo)的输出,从而快速创建逼真的训练世界。这项工作连接了高吞吐量仿真与高保真感知,推动了可扩展和可泛化的机器人学习。所有代码和数据都将开源,供社区在此基础上进行构建。视频、代码和数据可在 https://escontrela.me/gauss_gym/ 获取。