主题: Modern Deep Learning Techniques Applied to Natural Language Processing

简要介绍: 该文章概述了基于深度学习的自然语言处理(NLP)的最新趋势。 它涵盖了深度学习模型(例如递归神经网络(RNN),卷积神经网络(CNN)和强化学习)背后的理论描述和实现细节,用于解决各种NLP任务和应用。 概述还包含NLP任务(例如机器翻译,问题解答和对话系统)的最新结果摘要。

成为VIP会员查看完整内容
0
36

相关内容

自然语言处理(NLP)是语言学,计算机科学,信息工程和人工智能的一个子领域,与计算机和人类(自然)语言之间的相互作用有关,尤其是如何对计算机进行编程以处理和分析大量自然语言数据 。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

题目: Natural Language Processing Advancements By Deep Learning: A Survey

摘要: 自然语言处理(NLP)帮助智能机器更好地理解人类语言,实现基于语言的人机交流。算力的最新发展和语言大数据的出现,增加了使用数据驱动方法自动进行语义分析的需求。由于深度学习方法在计算机视觉、自动语音识别,特别是NLP等领域的应用取得了显著的进步,数据驱动策略的应用已经非常普遍。本综述对得益于深度学习的NLP的不同方面和应用进行了分类和讨论。它涵盖了核心的NLP任务和应用,并描述了深度学习方法和模型如何推进这些领域。我们并进一步分析和比较不同的方法和最先进的模型。

成为VIP会员查看完整内容
0
58

简介: 人们在阅读文章时,可以识别关键思想,作出总结,并建立文章中的联系以及对其他需要理解的内容等方面都做得很出色。深度学习的最新进展使计算机系统可以实现类似的功能。用于自然语言处理的深度学习可教您将深度学习方法应用于自然语言处理(NLP),以有效地解释和使用文章。在这本书中,NLP专家Stephan Raaijmakers提炼了他对这个快速发展的领域中最新技术发展的研究。通过详细的说明和丰富的代码示例,您将探索最具挑战性的NLP问题,并学习如何通过深度学习解决它们!

自然语言处理是教计算机解释和处理人类语言的科学。最近,随着深度学习的应用,NLP技术已跃升至令人兴奋的新水平。这些突破包括模式识别,从上下文中进行推断以及确定情感语调,从根本上改善了现代日常便利性,例如网络搜索,以及与语音助手的交互。他们也在改变商业世界!

目录:

  • NLP和深度学习概述
  • 文本表示
  • 词嵌入
  • 文本相似性模型
  • 序列NLP
  • 语义角色标签
  • 基于深度记忆的NLP
  • 语言结构
  • 深度NLP的超参数

1深度NLP学习

  • 1.1概述
  • 1.2面向NLP的机器学习方法
  • 1.2.1感知机
  • 1.2.2 支持向量机
  • 1.2.3基于记忆的学习
  • 1.3深度学习
  • 1.4语言的向量表示
  • 1.4.1表示向量
  • 1.4.2运算向量
  • 1.5工具
  • 1.5.1哈希技巧
  • 1.5.2向量归一化
  • 1.6总结

2 深度学习和语言:基础知识

  • 2.1深度学习的基本构架
  • 2.1.1多层感知机
  • 2.1.2基本运算符:空间和时间
  • 2.2深度学习和NLP
  • 2.3总结

3文字嵌入

  • 3.1嵌入
  • 3.1.1手工嵌入
  • 3.1.2学习嵌入
  • 3.2word2vec
  • 3.3doc2vec
  • 3.4总结

4文字相似度

  • 4.1问题
  • 4.2数据
  • 4.2.1作者归属和验证数据
  • 4.3数据表示
  • 4.3.1分割文件
  • 4.3.2字的信息
  • 4.3.3子字集信息
  • 4.4相似度测量模型
  • 4.5.1多层感知机
  • 4.5.2CNN
  • 4.6总结

5序列NLP和记忆

  • 5.1记忆和语言
  • 5.1.1问答
  • 5.2数据和数据处理
  • 5.3序列模型的问答
  • 5.3.1用于问答的RNN
  • 5.3.2用于问答的LSTM
  • 5.3.3问答的端到端存储网络
  • 5.4总结

6NLP的6种情景记忆

  • 6.1序列NLP的记忆网络
  • 6.2数据与数据处理
  • 6.2.1PP附件数据
  • 6.2.2荷兰小数据
  • 6.2.3西班牙语词性数据
  • 6.3监督存储网络
  • 6.3.1PP连接
  • 6.3.2荷兰小商品
  • 6.3.3西班牙语词性标记
  • 6.4半监督存储网络
  • 6.5半监督存储网络:实验和结果
  • 6.6小结
  • 6.7代码和数据

7注意力机制

  • 7.1神经注意力机制
  • 7.2数据
  • 7.3静态注意力机制:MLP
  • 7.4暂态注意力机制:LSTM
  • 7.4.1实验
  • 7.5小结

8多任务学习

  • 8.1简介
  • 8.2数据
  • 8.3.1数据处理
  • 8.3.2硬参数共享
  • 8.3.3软参数共享
  • 8.3.4混合参数共享
  • 8.4主题分类
  • 8.4.1数据处理
  • 8.4.2硬参数共享
  • 8.4.3软参数共享
  • 8.4.4混合参数共享
  • 8.5词性和命名实体识别数据
  • 8.5.1数据处理
  • 8.5.2硬参数共享
  • 8.5.3软参数共享
  • 8.5.4混合参数共享
  • 8.6结论

附录

附录A:NLP

附录B:矩阵代数

附录C:超参数估计和分类器性能评估

成为VIP会员查看完整内容
0
40

论文主题: Machine Learning Techniques for Biomedical Image Segmentation: An Overview of Technical Aspects and Introduction to State‐of‐Art Applications

论文摘要: 近年来,在开发更精确、更有效的医学图像和自然图像分割的机器学习算法方面取得了重大进展。在这篇综述文章中,我们强调了机器学习算法在医学影像领域实现高效准确分割的重要作用。我们特别关注与机器学习方法在生物医学图像分割中的应用相关的几个关键研究。我们回顾了经典的机器学习算法,如马尔可夫随机场、k-均值聚类、随机森林等。尽管与深度学习技术相比,此类经典学习模型往往不太准确,但它们往往更具样本效率,结构也不太复杂。我们还回顾了不同的深度学习结构,如人工神经网络(ANNs)、卷积神经网络(CNNs)和递归神经网络(RNNs),并给出了这些学习模型在过去三年中取得的分割结果。我们强调了每种机器学习范式的成功和局限性。此外,我们还讨论了与不同机器学习模型训练相关的几个挑战,并提出了一些启发式方法来解决这些挑战。

成为VIP会员查看完整内容
0
34

Convolutional neural networks (CNNs) have recently emerged as a popular building block for natural language processing (NLP). Despite their success, most existing CNN models employed in NLP share the same learned (and static) set of filters for all input sentences. In this paper, we consider an approach of using a small meta network to learn context-sensitive convolutional filters for text processing. The role of meta network is to abstract the contextual information of a sentence or document into a set of input-aware filters. We further generalize this framework to model sentence pairs, where a bidirectional filter generation mechanism is introduced to encapsulate co-dependent sentence representations. In our benchmarks on four different tasks, including ontology classification, sentiment analysis, answer sentence selection, and paraphrase identification, our proposed model, a modified CNN with context-sensitive filters, consistently outperforms the standard CNN and attention-based CNN baselines. By visualizing the learned context-sensitive filters, we further validate and rationalize the effectiveness of proposed framework.

0
6
下载
预览
小贴士
相关VIP内容
专知会员服务
197+阅读 · 2020年5月8日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
155+阅读 · 2020年1月13日
深度学习自然语言处理综述,266篇参考文献
专知会员服务
156+阅读 · 2019年10月12日
相关资讯
相关论文
Xipeng Qiu,Tianxiang Sun,Yige Xu,Yunfan Shao,Ning Dai,Xuanjing Huang
91+阅读 · 2020年3月18日
Ramchandra Joshi,Purvi Goel,Raviraj Joshi
4+阅读 · 2020年1月19日
A Survey of the Usages of Deep Learning in Natural Language Processing
Daniel W. Otter,Julian R. Medina,Jugal K. Kalita
75+阅读 · 2019年9月11日
Advances in Natural Language Question Answering: A Review
K. S. D. Ishwari,A. K. R. R. Aneeze,S. Sudheesan,H. J. D. A. Karunaratne,A. Nugaliyadde,Y. Mallawarrachchi
4+阅读 · 2019年4月10日
Claudio Gambella,Bissan Ghaddar,Joe Naoum-Sawaya
9+阅读 · 2019年1月16日
Marc Everett Johnson
3+阅读 · 2018年12月18日
Chunwei Tian,Yong Xu,Lunke Fei,Ke Yan
4+阅读 · 2018年10月11日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
Dinghan Shen,Martin Renqiang Min,Yitong Li,Lawrence Carin
6+阅读 · 2018年8月30日
Tom Young,Devamanyu Hazarika,Soujanya Poria,Erik Cambria
7+阅读 · 2018年2月20日
Top