We study the capability of the Fast Fourier Transform (FFT) to accelerate exact and approximate matrix multiplication without using Strassen-like divide-and-conquer. We present a simple exact algorithm running in $O(n^{2.89})$ time, which only sums a few convolutions (FFTs) in $\mathbb{Z}_{m}^{k}$, building on the work of Cohn, Kleinberg, Szegedy and Umans (2005). As a corollary, combining this algorithm with linear sketching breaks the longstanding linear speed-accuracy tradeoff for "combinatorial" approximate matrix multiplication (AMM, Pagh'13, Sarlos'06, Clarkson-Woodruff'13), achieving error $\frac{1}{r^{1.1}}\left\lVert \mathbf{A} \right\rVert_{F}^{2}\left\lVert \mathbf{B}\right\rVert_{F}^{2}$ in $O(rn^{2})$ time, using nothing but FFTs. Motivated by the rich literature for approximating polynomials, our main contribution in this paper is extending the group-theoretic framework of Cohn and Umans (2003) to approximate matrix multiplication (AMM). Specifically, we introduce and study an approximate notion of the Triple Product Property, which in the abelian case is equivalent to finding a Sumset which minimizes (multi-)intersections with an arithmetic progression. We prove tight bounds on this quantity for abelian groups (yielding a simple and practical AMM algorithm via polynomial multiplication), and establish a weaker lower bound for non-abelian groups, extending a lemma of Gowers. Finally, we propose a concrete approach that uses low-degree approximation of multi-variate polynomials for AMM, which we believe will lead to practical, non-asymptotic AMM algorithms in real-world applications, most notably LLM inference.


翻译:本研究探讨了快速傅里叶变换(FFT)在不使用Strassen类分治策略的情况下加速精确及近似矩阵乘法的能力。我们提出了一种简单的精确算法,其时间复杂度为$O(n^{2.89})$,该算法仅对$\mathbb{Z}_{m}^{k}$中的若干卷积(FFT)进行求和,建立在Cohn、Kleinberg、Szegedy和Umans(2005)的研究基础之上。作为推论,将此算法与线性草图技术结合,突破了长期以来“组合式”近似矩阵乘法(AMM,Pagh'13, Sarlos'06, Clarkson-Woodruff'13)的线性速度-精度权衡,在$O(rn^{2})$时间内实现误差$\frac{1}{r^{1.1}}\left\lVert \mathbf{A} \right\rVert_{F}^{2}\left\lVert \mathbf{B}\right\rVert_{F}^{2}$,且仅使用FFT。受近似多项式丰富文献的启发,本文主要贡献在于将Cohn和Umans(2003)的群论框架扩展至近似矩阵乘法(AMM)。具体而言,我们引入并研究了三重积性质的近似概念,在阿贝尔群情形下等价于寻找与算术级数具有最小(多重)交集的集合和。我们证明了阿贝尔群上该量的紧界(通过多项式乘法产生简单实用的AMM算法),并对非阿贝尔群建立了较弱的下界,扩展了Gowers的引理。最后,我们提出了一种利用多元多项式低阶近似的AMM具体实现路径,相信这将为现实应用(尤其是LLM推理)带来实用、非渐近的AMM算法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
76+阅读 · 2022年3月26日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员