Models trained by means of supervised learning are increasingly deployed in high-stakes domains, and, when their predictions inform decisions about people, they inevitably impact (positively or negatively) on their lives. As a consequence, those in charge of developing these models must carefully evaluate their impact on different groups of people and ensure that sensitive demographic attributes, such as race or sex, do not result in unfair treatment for members of specific groups. For doing this, awareness of demographic attributes on the part of those evaluating model impacts is fundamental. Unfortunately, the collection of these attributes is often in conflict with industry practices and legislation on data minimization and privacy. For this reason, it may be hard to measure the group fairness of trained models, even from within the companies developing them. In this work, we tackle the problem of measuring group fairness under unawareness of sensitive attributes, by using techniques from quantification, a supervised learning task concerned with directly providing group-level prevalence estimates (rather than individual-level class labels). We identify five important factors that complicate the estimation of fairness under unawareness and formalize them into five different experimental protocols under which we assess the effectiveness of different estimators of group fairness. We also consider the problem of potential model misuse to infer sensitive attributes at an individual level, and demonstrate that quantification approaches are suitable for decoupling the (desirable) objective of measuring group fairness from the (undesirable) objective of inferring sensitive attributes of individuals.


翻译:通过监督学习而培训的模型越来越多地部署在高取量领域,当其预测使人们了解关于人的决定时,这些模型不可避免地(积极或消极)对其生活产生影响;因此,负责开发这些模型的人必须仔细评估其对不同群体人口的影响,确保敏感的人口特征,例如种族或性别,不会对特定群体成员造成不公平待遇;为此,评估模型影响的人对人口属性的认识至关重要;不幸的是,这些属性的收集往往与行业惯例和关于数据尽量减少和隐私的立法发生冲突;为此,可能很难衡量经过培训的模型的团体公平性,甚至难以衡量开发这些模型的公司内部的这种公平性;在这项工作中,我们通过使用量化技术,处理在敏感属性不知情的情况下衡量群体公平性的问题,通过直接提供群体一级流行率估计(而不是个人等级标签)的监管性学习任务。 我们确定五个重要因素,使对不知情性公正性的估计复杂化,并将其正规成五种不同的实验协议,据此我们评估不同估测度的模型的有效性,甚至从开发这些模型的公司内部衡量这些模型的公平性。 在这项工作中,我们还考虑在敏感程度上衡量群体客观的可靠性方面的潜在问题。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
240+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月9日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
240+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员