Human-Object Interaction (HOI) detection is an important problem to understand how humans interact with objects. In this paper, we explore interactiveness knowledge which indicates whether a human and an object interact with each other or not. We found that interactiveness knowledge can be learned across HOI datasets and bridge the gap between diverse HOI category settings. Our core idea is to exploit an interactiveness network to learn the general interactiveness knowledge from multiple HOI datasets and perform Non-Interaction Suppression (NIS) before HOI classification in inference. On account of the generalization ability of interactiveness, interactiveness network is a transferable knowledge learner and can be cooperated with any HOI detection models to achieve desirable results. We utilize the human instance and body part features together to learn the interactiveness in hierarchical paradigm, i.e., instance-level and body part-level interactivenesses. Thereafter, a consistency task is proposed to guide the learning and extract deeper interactive visual clues. We extensively evaluate the proposed method on HICO-DET, V-COCO, and a newly constructed PaStaNet-HOI dataset. With the learned interactiveness, our method outperforms state-of-the-art HOI detection methods, verifying its efficacy and flexibility. Code is available at https://github.com/DirtyHarryLYL/Transferable-Interactiveness-Network.
翻译:我们发现,互动性知识可以在HOI数据集中学习,可以弥合不同HOI类别设置之间的差距。我们的核心想法是利用互动性网络从多个HOI数据集中学习一般互动性知识,并在HOI分类推断之前执行更深的互动式视觉线索。关于互动性的一般化能力,互动性网络是一个可转让的知识学习者,可以与HOI检测模型合作,以取得理想的结果。我们利用人类实例和身体部分特征一起学习等级模式的互动性,即,实例级别和身体部分互动性。此后,我们提出一个一致性任务,以指导学习和获取更深层次的互动视觉线索。我们广泛评价了关于HICO-DET、V-COCO和新建的PASNet-HOI-D数据检测模型的拟议方法。我们利用人类实例和身体部分的特征一起学习等级模式的互动性,即,即实例级别和身体部分互动性互动性。我们所了解的系统/内部智能测试方法。