Super-resolving the Magnetic Resonance (MR) image of a target contrast under the guidance of the corresponding auxiliary contrast, which provides additional anatomical information, is a new and effective solution for fast MR imaging. However, current multi-contrast super-resolution (SR) methods tend to concatenate different contrasts directly, ignoring their relationships in different clues, e.g., in the high-intensity and low-intensity regions. In this study, we propose a separable attention network (comprising high-intensity priority attention and low-intensity separation attention), named SANet. Our SANet could explore the areas of high-intensity and low-intensity regions in the "forward" and "reverse" directions with the help of the auxiliary contrast, while learning clearer anatomical structure and edge information for the SR of a target-contrast MR image. SANet provides three appealing benefits: (1) It is the first model to explore a separable attention mechanism that uses the auxiliary contrast to predict the high-intensity and low-intensity regions regions, diverting more attention to refining any uncertain details between these regions and correcting the fine areas in the reconstructed results. (2) A multi-stage integration module is proposed to learn the response of multi-contrast fusion at multiple stages, get the dependency between the fused representations, and boost their representation ability. (3) Extensive experiments with various state-of-the-art multi-contrast SR methods on fastMRI and clinical \textit{in vivo} datasets demonstrate the superiority of our model.
翻译:在相应的辅助对比值的指导下,超磁共振成像(MR)图像的超强解析(MR)图像,在相应的辅助对比值的指导下,提供了更多的解剖信息,这是快速MR成像的一种新的有效解决方案。然而,目前的多调超分辨率(SR)方法往往直接将不同的对比相交,忽视了它们在不同线索中的关系,例如在高强度和低强度区域。在本研究中,我们建议建立一个分离的注意网络(包括高强度优先关注和低强度分离关注),名为SANet。我们的SANet可以探索“前向”和“反向”超级分辨率(SR)成像样模型中高密度和低密度区域的区域,同时学习更清晰的解剖结构以及目标高强度MRMR图像中斯洛伐克共和国的边缘信息。SANet提供三种吸引力:(1)这是第一个模型,用来探索一种可分离的注意机制,利用高密度和低强度分级对比值预测高密度和低强度离差分解性分解分解(SANet)。在快速和低振动性结构中,在快速递增缩模型中,正在调整这些区域中的任何注意力,这些不稳性反应区域。