We focus on a fundamental task of detecting meaningful line structures, a.k.a. semantic line, in natural scenes. Many previous methods regard this problem as a special case of object detection and adjust existing object detectors for semantic line detection. However, these methods neglect the inherent characteristics of lines, leading to sub-optimal performance. Lines enjoy much simpler geometric property than complex objects and thus can be compactly parameterized by a few arguments. To better exploit the property of lines, in this paper, we incorporate the classical Hough transform technique into deeply learned representations and propose a one-shot end-to-end learning framework for line detection. By parameterizing lines with slopes and biases, we perform Hough transform to translate deep representations into the parametric domain, in which we perform line detection. Specifically, we aggregate features along candidate lines on the feature map plane and then assign the aggregated features to corresponding locations in the parametric domain. Consequently, the problem of detecting semantic lines in the spatial domain is transformed into spotting individual points in the parametric domain, making the post-processing steps, i.e. non-maximal suppression, more efficient. Furthermore, our method makes it easy to extract contextual line features eg features along lines close to a specific line, that are critical for accurate line detection. In addition to the proposed method, we design an evaluation metric to assess the quality of line detection and construct a large scale dataset for the line detection task. Experimental results on our proposed dataset and another public dataset demonstrate the advantages of our method over previous state-of-the-art alternatives.


翻译:我们的重点是在自然场景中探测有意义的线条结构(a.k.a.a.语义线)的基本任务。许多先前的方法将这一问题视为物体探测和调整现有物体探测器以探测语义线的特例。但是,这些方法忽略了线条的固有特征,导致亚优性性能。线条的几何属性比复杂天体简单得多,因此可以用几个参数进行缩放参数。为了更好地利用线条的属性,在本文件中,我们把古典Hough将技术转化成深层次的表达方式,并提议一个一对一的线至端学习框架来探测线线。通过用斜坡度和偏斜度对线线进行参数的参数比较,我们进行人工转换,将深度表示转化为准性域域域,我们进行线性探测。具体地图图图图图的候选线集特征加在一起,然后将总特征分配给对准区域域内相应位置的参数。因此,为了更好地将空间域测测测测测测测测线线线的特性转变为对等域内的个别点,将后处理步骤,即用非轴线线线线线线线段测测测测测测测,我们比较容易地测测地地测测测测测测数据。我们测测测测地的线,我们的方法是比较地测测测测测算的线线线线线线线线线线路段,我们测测测测测算的底路段。我们测算的底的底路法,我们测的比较地测路的方法是比较地测路的方法是比较地测路法。我们测路路路的底测路的底测路路路段。

1
下载
关闭预览

相关内容

CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Arxiv
0+阅读 · 2021年6月21日
Arxiv
3+阅读 · 2018年6月14日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
6+阅读 · 2018年3月19日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员