Entity resolution has been an essential and well-studied task in data cleaning research for decades. Existing work has discussed the feasibility of utilizing pre-trained language models to perform entity resolution and achieved promising results. However, few works have discussed injecting domain knowledge to improve the performance of pre-trained language models on entity resolution tasks. In this study, we propose Knowledge Augmented Entity Resolution (KAER), a novel framework named for augmenting pre-trained language models with external knowledge for entity resolution. We discuss the results of utilizing different knowledge augmentation and prompting methods to improve entity resolution performance. Our model improves on Ditto, the existing state-of-the-art entity resolution method. In particular, 1) KAER performs more robustly and achieves better results on "dirty data", and 2) with more general knowledge injection, KAER outperforms the existing baseline models on the textual dataset and dataset from the online product domain. 3) KAER achieves competitive results on highly domain-specific datasets, such as citation datasets, requiring the injection of expert knowledge in future work.


翻译:几十年来,实体的解决方案一直是数据清理研究中一项至关重要和研究周全的任务。现有工作讨论了利用培训前语言模型执行实体解决方案并取得有希望的成果的可行性。然而,很少有工作讨论了注射领域知识,以改进实体解决方案任务培训前语言模型的绩效。在本研究中,我们提出了知识增强实体解决方案(KAER),这是一个新颖的框架,旨在增加培训前语言模型,并提供外部知识,供实体解决方案使用。我们讨论了利用不同知识增加和推动方法提高实体解决方案绩效的结果。我们改进了现有最新实体解决方案方法Ditto的模型。特别是,1 KAER在“脏数据”方面表现得更加有力,并取得更好的结果。2)通过更一般性的知识注入,KAER超越了现有关于文本数据集和在线产品领域数据集的基线模型。3) KAER在高域数据集(如引用数据集)上取得竞争性结果,这需要在今后工作中注入专家知识。

0
下载
关闭预览

相关内容

不同的数据提供方对同一个事物即实体 (Entity)可能会有不同的描述 (这 里的描述包括数据格式 、表示方法 等) ,每一个对实体的描述称为该实体的一个引用。实体解析,是指从一个“ 引用集合”中解析并映射到现实世界中的“ 实体”过程 。实体解析(Entity Resolution)又被称为记录链接(Record Linkage) 、对象识别(object Identification ) 、个体识别(Individual Identification) 、重复检测(Duplicate Detection)
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员