Unified architectures in multimodal large language models (MLLM) have shown promise in handling diverse tasks within a single framework. In the text-to-speech (TTS) task, current MLLM-based approaches rely on discrete token representations, which disregard the inherently continuous nature of speech and can lead to loss of fine-grained acoustic information. In this work, we investigate the TTS within the MLLM paradigm using continuous speech representations. We design a dual-head architecture and implement two complementary training strategies for a robust model. (1) A diffusion head generating continuous speech representations is added on the MLLM, which is on frame-level and strictly autoregressive. (2) The original language model head is retained to preserve multitask capability and to control the start and end of speech synthesis. (3) Masked training is employed to address exposure bias in autoregressive decoding. (4) To stabilize optimization, we propose a two-stage scheme where the LM is frozen in the second stage, ensuring the diffusion head learns from a fixed input distribution. Evaluations on LibriSpeech(PC) test-clean show that our approach achieves state-of-the-art autoregressive performance, with a WER of 1.95%, speaker similarity of 0.54, and UTMOS of 4.00. The two-stage training yields a 46% relative WER reduction over the one-stage training baseline. These results highlight the effectiveness of combining autoregressive modeling with continuous-token diffusion, supported by a two-stage training procedure.


翻译:多模态大语言模型(MLLM)中的统一架构已展现出在单一框架内处理多样化任务的潜力。在文本转语音(TTS)任务中,当前基于MLLM的方法依赖于离散令牌表示,这忽视了语音固有的连续性,并可能导致细粒度声学信息的丢失。在本工作中,我们利用连续语音表征研究了MLLM范式下的TTS任务。我们设计了一种双头架构,并实施了两种互补的训练策略以构建鲁棒模型。(1)在MLLM上添加了一个生成连续语音表征的扩散头,该扩散头工作在帧级别且严格自回归。(2)保留了原始的语言模型头以维持多任务能力,并控制语音合成的开始与结束。(3)采用掩码训练以解决自回归解码中的曝光偏差问题。(4)为稳定优化,我们提出了一种两阶段训练方案:在第二阶段冻结语言模型,确保扩散头从固定的输入分布中学习。在LibriSpeech(PC) test-clean上的评估表明,我们的方法实现了最先进的自回归性能,词错误率(WER)为1.95%,说话人相似度为0.54,UTMOS得分为4.00。两阶段训练相较于单阶段训练基线实现了46%的相对WER降低。这些结果凸显了将自回归建模与连续令牌扩散相结合,并辅以两阶段训练程序的有效性。

0
下载
关闭预览

相关内容

语音合成(Speech Synthesis),也称为文语转换(Text-to-Speech, TTS,它是将任意的输入文本转换成自然流畅的语音输出。语音合成涉及到人工智能、心理学、声学、语言学、数字信号处理、计算机科学等多个学科技术,是信息处理领域中的一项前沿技术。 随着计算机技术的不断提高,语音合成技术从早期的共振峰合成,逐步发展为波形拼接合成和统计参数语音合成,再发展到混合语音合成;合成语音的质量、自然度已经得到明显提高,基本能满足一些特定场合的应用需求。目前,语音合成技术在银行、医院等的信息播报系统、汽车导航系统、自动应答呼叫中心等都有广泛应用,取得了巨大的经济效益。 另外,随着智能手机、MP3、PDA 等与我们生活密切相关的媒介的大量涌现,语音合成的应用也在逐渐向娱乐、语音教学、康复治疗等领域深入。可以说语音合成正在影响着人们生活的方方面面。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员