The selection of most informative and discriminative features from high-dimensional data has been noticed as an important topic in machine learning and data engineering. Using matrix factorization-based techniques such as nonnegative matrix factorization for feature selection has emerged as a hot topic in feature selection. The main goal of feature selection using matrix factorization is to extract a subspace which approximates the original space but in a lower dimension. In this study, rank revealing QR (RRQR) factorization, which is computationally cheaper than singular value decomposition (SVD), is leveraged in obtaining the most informative features as a novel unsupervised feature selection technique. This technique uses the permutation matrix of QR for feature selection which is a unique property to this factorization method. Moreover, QR factorization is embedded into non-negative matrix factorization (NMF) objective function as a new unsupervised feature selection method. Lastly, a hybrid feature selection algorithm is proposed by coupling RRQR, as a filter-based technique, and a Genetic algorithm as a wrapper-based technique. In this method, redundant features are removed using RRQR factorization and the most discriminative subset of features are selected using the Genetic algorithm. The proposed algorithm shows to be dependable and robust when compared against state-of-the-art feature selection algorithms in supervised, unsupervised, and semi-supervised settings. All methods are tested on seven available microarray datasets using KNN, SVM and C4.5 classifiers. In terms of evaluation metrics, the experimental results shows that the proposed method is comparable with the state-of-the-art feature selection.


翻译:在机器学习和数据工程中,人们注意到从高维数据中选择信息最丰富和最具歧视性的特征是一个重要议题。使用基于矩阵的因子化技术,例如用于特征选择的非负式矩阵因子化,在特征选择中作为一个热题出现。使用矩阵因子化的主要目的,是提取一个与原始空间相近但在较低层面的子空间。在本研究中,通过计算比单值分解(SVD)更廉价的 QR(RRQR)因子化,在获得最基于信息的特点选择技术(新颖的、不受监督的特性选择技术)时,利用基于矩阵的因子化技术,这种技术在选择特征时使用QRR(QR)的变异性矩阵。此外,QR(QR)因不具有新的不受监督的特性选择功能,因此,在采用基于过滤技术的混合RRRRR(S)和遗传算法作为基于包装的技术。在这一方法中,在采用最具有可比性的内,在使用可控制的内级的内,所有可变的内,在使用可比较的CRRLA值选择的内,所有可比较的因子特性特性显示的可比较的可比较的可变的可变式的Sq等的内,将显示的内,所有可比较的可比较的可变的可变式的可变式的SqLIFS。

0
下载
关闭预览

相关内容

特征选择( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ),或属性选择( Attribute Selection )。是指从已有的M个特征(Feature)中选择N个特征使得系统的特定指标最优化,是从原始特征中选择出一些最有效特征以降低数据集维度的过程,是提高学习算法性能的一个重要手段,也是模式识别中关键的数据预处理步骤。对于一个学习算法来说,好的学习样本是训练模型的关键。
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月5日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员