High-quality and challenging event stream datasets play an important role in the design of an efficient event-driven mechanism that mimics the brain. Although event cameras can provide high dynamic range and low-energy event stream data, the scale is smaller and more difficult to obtain than traditional frame-based data, which restricts the development of neuromorphic computing. Data augmentation can improve the quantity and quality of the original data by processing more representations from the original data. This paper proposes an efficient data augmentation strategy for event stream data: EventMix. We carefully design the mixing of different event streams by Gaussian Mixture Model to generate random 3D masks and achieve arbitrary shape mixing of event streams in the spatio-temporal dimension. By computing the relative distances of event streams, we propose a more reasonable way to assign labels to the mixed samples. The experimental results on multiple neuromorphic datasets have shown that our strategy can improve its performance on neuromorphic datasets both for ANNs and SNNs, and we have achieved state-of-the-art performance on DVS-CIFAR10, N-Caltech101, N-CARS, and DVS-Gesture datasets.
翻译:高品质和具有挑战性的事件流数据集在设计模拟大脑的高效事件驱动机制方面起着重要作用。虽然事件相机可以提供高动态范围和低能事件流数据,但比传统的基于框架的数据要小、更难获得,这限制了神经形态计算的发展。数据增强可以通过从原始数据中处理更多的演示来提高原始数据的数量和质量。本文件为事件流数据提出了一个有效的数据增强战略:事件Mix。我们仔细设计了高斯混合模型的不同事件流的混合方法,以生成随机的3D面罩,并实现空间时空层面事件流的任意组合。通过计算事件流的相对距离,我们提出了为混合样本分配标签的更合理方法。多个神经形态数据集的实验结果显示,我们的战略可以改善非非非非非斯和SNNNS的神经形态数据集的性能,我们在DVS-CIFAR10、N-Caltech10、N-CARS-CARS-DVS-DS-101、N-CARS-CARS-DS-DS-DS-CARS-DS-DS-DS-DS-DS-CARS-DS-DS-CARS-DS-DS-DS-DSet、N-CARS-CARTS-DS-CSDSDS-CS-CASDS-DSDS-DS-CS-CS-CS-DS-DS-CS-DDDDDTASDDDDDDTASTASDDDDDSTASDSDSDSDSDSDS)上,我们的状态性性性性性性性性性性性性性性性性性性能性能性能性能性能性能性能性能性能性能性能,我们性能,我们性能,我们性能,我们性能,我们性能,我们性能,我们性能,我们性能,我们性能,我们性能,我们性能和DS-CS-CS-CS-CA和DS-CS-CA和DS-CA和DS-CAS-CAS-CA-CS-CS-CA