This paper introduces a broad class of Mirror Descent (MD) and Generalized Exponentiated Gradient (GEG) algorithms derived from trace-form entropies defined via deformed logarithms. Leveraging these generalized entropies yields MD \& GEG algorithms with improved convergence behavior, robustness to vanishing and exploding gradients, and inherent adaptability to non-Euclidean geometries through mirror maps. We establish deep connections between these methods and Amari's natural gradient, revealing a unified geometric foundation for additive, multiplicative, and natural gradient updates. Focusing on the Tsallis, Kaniadakis, Sharma--Taneja--Mittal, and Kaniadakis--Lissia--Scarfone entropy families, we show that each entropy induces a distinct Riemannian metric on the parameter space, leading to GEG algorithms that preserve the natural statistical geometry. The tunable parameters of deformed logarithms enable adaptive geometric selection, providing enhanced robustness and convergence over classical Euclidean optimization. Overall, our framework unifies key first-order MD optimization methods under a single information-geometric perspective based on generalized Bregman divergences, where the choice of entropy determines the underlying metric and dual geometric structure.


翻译:本文引入了一类广泛的镜像下降算法与广义指数梯度算法,这些算法源自通过变形对数定义的迹形式熵。利用这些广义熵,我们得到了具有改进收敛行为、对梯度消失与爆炸具有鲁棒性,并通过镜像映射天然适应非欧几里得几何的MD与GEG算法。我们建立了这些方法与Amari自然梯度之间的深刻联系,揭示了加法、乘法与自然梯度更新的统一几何基础。聚焦于Tsallis熵、Kaniadakis熵、Sharma--Taneja--Mittal熵族以及Kaniadakis--Lissia--Scarfone熵族,我们证明每种熵在参数空间上诱导出不同的黎曼度量,从而产生能够保持自然统计几何的GEG算法。变形对数的可调参数使得自适应几何选择成为可能,相比经典欧几里得优化提供了更强的鲁棒性与收敛性。总体而言,我们的框架基于广义Bregman散度,将关键的一阶MD优化方法统一在单一的信息几何视角下,其中熵的选择决定了底层度量与对偶几何结构。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员