This paper introduces a broad class of Mirror Descent (MD) and Generalized Exponentiated Gradient (GEG) algorithms derived from trace-form entropies defined via deformed logarithms. Leveraging these generalized entropies yields MD \& GEG algorithms with improved convergence behavior, robustness to vanishing and exploding gradients, and inherent adaptability to non-Euclidean geometries through mirror maps. We establish deep connections between these methods and Amari's natural gradient, revealing a unified geometric foundation for additive, multiplicative, and natural gradient updates. Focusing on the Tsallis, Kaniadakis, Sharma--Taneja--Mittal, and Kaniadakis--Lissia--Scarfone entropy families, we show that each entropy induces a distinct Riemannian metric on the parameter space, leading to GEG algorithms that preserve the natural statistical geometry. The tunable parameters of deformed logarithms enable adaptive geometric selection, providing enhanced robustness and convergence over classical Euclidean optimization. Overall, our framework unifies key first-order MD optimization methods under a single information-geometric perspective based on generalized Bregman divergences, where the choice of entropy determines the underlying metric and dual geometric structure.
翻译:本文引入了一类广泛的镜像下降算法与广义指数梯度算法,这些算法源自通过变形对数定义的迹形式熵。利用这些广义熵,我们得到了具有改进收敛行为、对梯度消失与爆炸具有鲁棒性,并通过镜像映射天然适应非欧几里得几何的MD与GEG算法。我们建立了这些方法与Amari自然梯度之间的深刻联系,揭示了加法、乘法与自然梯度更新的统一几何基础。聚焦于Tsallis熵、Kaniadakis熵、Sharma--Taneja--Mittal熵族以及Kaniadakis--Lissia--Scarfone熵族,我们证明每种熵在参数空间上诱导出不同的黎曼度量,从而产生能够保持自然统计几何的GEG算法。变形对数的可调参数使得自适应几何选择成为可能,相比经典欧几里得优化提供了更强的鲁棒性与收敛性。总体而言,我们的框架基于广义Bregman散度,将关键的一阶MD优化方法统一在单一的信息几何视角下,其中熵的选择决定了底层度量与对偶几何结构。