In this paper, we develop a hierarchical aerial computing framework composed of high altitude platform (HAP) and unmanned aerial vehicles (UAVs) to compute the fully offloaded tasks of terrestrial mobile users which are connected through an uplink non-orthogonal multiple access (UL-NOMA). In particular, the problem is formulated to minimize the AoI of all users with elastic tasks, by adjusting UAVs trajectory and resource allocation on both UAVs and HAP, which is restricted by the channel state information (CSI) uncertainty and multiple resource constraints of UAVs and HAP. In order to solve this non-convex optimization problem, two methods of multi-agent deep deterministic policy gradient (MADDPG) and federated reinforcement learning (FRL) are proposed to design the UAVs trajectory and obtain channel, power, and CPU allocations. It is shown that task scheduling significantly reduces the average AoI. This improvement is more pronounced for larger task sizes. On the one hand, it is shown that power allocation has a marginal effect on the average AoI compared to using full transmission power for all users. On the other hand, compared with traditional transmissions (fixed method) simulation result shows that our scheduling scheme has a lower average AoI.


翻译:本文提出了一个包括高空平台(HAP)和无人机(UAVs)的分层空中计算框架,用于计算通过上行非正交多址访问(UL-NOMA)连接的地面移动用户的完全卸载任务。我们的目标是通过调整UAVs的轨迹以及UAVs和HAP上的资源分配来最小化所有具有弹性任务的用户的AoI,并考虑到信道状态信息(CSI)的不确定性和UAVs和HAP的多个资源约束。为了解决这个非凸优化问题,我们提出了两种方法:多智能体深度确定性策略梯度(MADDPG)和联邦强化学习(FRL),用于设计UAVs的轨迹和获得信道、功率和CPU分配。通过实验结果表明,任务调度显著降低了平均AoI,并且在任务大小较大时改进程度更加显著。一方面,与针对所有用户使用全发射功率相比,功率分配对平均AoI的影响较小。另一方面,与传统的传输方式(固定方法)相比,模拟结果表明我们的调度方案具有更低的平均AoI。

0
下载
关闭预览

相关内容

148页最新《深度强化学习》教程,148页ppt
专知会员服务
74+阅读 · 2023年4月29日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
24+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员