Accurate, continuous out-of-hospital electrocardiogram (ECG) parameter measurement is vital for real-time cardiac health monitoring and telemedicine. On-device computation of single-lead ECG parameters enables timely assessment without reliance on centralized data processing, advancing personalized, ubiquitous cardiac care-yet comprehensive validation across heterogeneous real-world populations remains limited. This study validated the on-device algorithm FeatureDB (https://github.com/PKUDigitalHealth/FeatureDB) using two datasets: HeartVoice-ECG-lite (369 participants with single-lead ECGs annotated by two physicians) and PTB-XL/PTB-XL+ (21,354 patients with 12-lead ECGs and physicians' diagnostic annotations). FeatureDB computed PR, QT, and QTc intervals, with accuracy evaluated against physician annotations via mean absolute error (MAE), correlation analysis, and Bland-Altman analysis. Diagnostic performance for first-degree atrioventricular block (AVBI, PR-based) and long QT syndrome (LQT, QTc-based) was benchmarked against commercial 12-lead systems (12SL, Uni-G) and open-source algorithm Deli, using AUC, accuracy, sensitivity, and specificity. Results showed high concordance with expert annotations (Pearson correlations: 0.836-0.960), MAEs matching inter-observer variability, and minimal bias. AVBI AUC reached 0.787 (12SL: 0.859; Uni-G: 0.812; Deli: 0.501); LQT AUC was 0.684 (12SL: 0.716; Uni-G: 0.605; Deli: 0.569)-comparable to commercial tools and superior to open-source alternatives. FeatureDB delivers physician-level parameter accuracy and commercial-grade abnormality detection via single-lead devices, supporting scalable telemedicine, decentralized cardiac screening, and continuous monitoring in community and outpatient settings.
翻译:准确、连续的院外心电图(ECG)参数测量对于实时心脏健康监测和远程医疗至关重要。单导联心电图参数的设备端计算能够在不依赖集中式数据处理的情况下实现及时评估,从而推动个性化、普适性心脏护理的发展——然而,在异质性真实世界人群中进行全面验证的研究仍然有限。本研究使用两个数据集验证了设备端算法FeatureDB(https://github.com/PKUDigitalHealth/FeatureDB):HeartVoice-ECG-lite(包含369名参与者的单导联心电图,由两名医生标注)和PTB-XL/PTB-XL+(包含21,354名患者的12导联心电图及医生诊断标注)。FeatureDB计算了PR间期、QT间期和QTc间期,其准确性通过平均绝对误差(MAE)、相关性分析和Bland-Altman分析与医生标注进行对比评估。针对一度房室传导阻滞(AVBI,基于PR间期)和长QT综合征(LQT,基于QTc间期)的诊断性能,以商用12导联系统(12SL、Uni-G)和开源算法Deli为基准,使用AUC、准确率、灵敏度和特异性进行评价。结果显示,与专家标注具有高度一致性(Pearson相关系数:0.836-0.960),MAE与观察者间变异性相当,且偏差极小。AVBI的AUC达到0.787(12SL:0.859;Uni-G:0.812;Deli:0.501);LQT的AUC为0.684(12SL:0.716;Uni-G:0.605;Deli:0.569)——与商用工具相当,并优于开源替代方案。FeatureDB通过单导联设备实现了医生级别的参数准确性和商用级别的异常检测能力,支持可扩展的远程医疗、去中心化心脏筛查以及社区和门诊环境中的连续监测。