We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. Our SSD model is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stage and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, MS COCO, and ILSVRC datasets confirm that SSD has comparable accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. Compared to other single stage methods, SSD has much better accuracy, even with a smaller input image size. For $300\times 300$ input, SSD achieves 72.1% mAP on VOC2007 test at 58 FPS on a Nvidia Titan X and for $500\times 500$ input, SSD achieves 75.1% mAP, outperforming a comparable state of the art Faster R-CNN model. Code is available at https://github.com/weiliu89/caffe/tree/ssd .

4
下载
关闭预览

相关内容

SSD算法,其英文全名是Single Shot MultiBox Detector,Single shot指明了SSD算法属于one-stage方法,MultiBox指明了SSD是多框预测。

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

0
9
下载
预览

We present FoveaBox, an accurate, flexible and completely anchor-free framework for object detection. While almost all state-of-the-art object detectors utilize the predefined anchors to enumerate possible locations, scales and aspect ratios for the search of the objects, their performance and generalization ability are also limited to the design of anchors. Instead, FoveaBox directly learns the object existing possibility and the bounding box coordinates without anchor reference. This is achieved by: (a) predicting category-sensitive semantic maps for the object existing possibility, and (b) producing category-agnostic bounding box for each position that potentially contains an object. The scales of target boxes are naturally associated with feature pyramid representations for each input image. Without bells and whistles, FoveaBox achieves state-of-the-art single model performance of 42.1 AP on the standard COCO detection benchmark. Specially for the objects with arbitrary aspect ratios, FoveaBox brings in significant improvement compared to the anchor-based detectors. More surprisingly, when it is challenged by the stretched testing images, FoveaBox shows great robustness and generalization ability to the changed distribution of bounding box shapes. The code will be made publicly available.

0
5
下载
预览

With the emergence of edge computing, there is an increasing need for running convolutional neural network based object detection on small form factor edge computing devices with limited compute and thermal budget for applications such as video surveillance. To address this problem, efficient object detection frameworks such as YOLO and SSD were proposed. However, SSD based object detection that uses VGG16 as backend network is insufficient to achieve real time speed on edge devices. To further improve the detection speed, the backend network is replaced by more efficient networks such as SqueezeNet and MobileNet. Although the speed is greatly improved, it comes with a price of lower accuracy. In this paper, we propose an efficient SSD named Fire SSD. Fire SSD achieves 70.7mAP on Pascal VOC 2007 test set. Fire SSD achieves the speed of 30.6FPS on low power mainstream CPU and is about 6 times faster than SSD300 and has about 4 times smaller model size. Fire SSD also achieves 22.2FPS on integrated GPU.

0
3
下载
预览

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

0
11
下载
预览

Deep convolutional neural networks have become a key element in the recent breakthrough of salient object detection. However, existing CNN-based methods are based on either patch-wise (region-wise) training and inference or fully convolutional networks. Methods in the former category are generally time-consuming due to severe storage and computational redundancies among overlapping patches. To overcome this deficiency, methods in the second category attempt to directly map a raw input image to a predicted dense saliency map in a single network forward pass. Though being very efficient, it is arduous for these methods to detect salient objects of different scales or salient regions with weak semantic information. In this paper, we develop hybrid contrast-oriented deep neural networks to overcome the aforementioned limitations. Each of our deep networks is composed of two complementary components, including a fully convolutional stream for dense prediction and a segment-level spatial pooling stream for sparse saliency inference. We further propose an attentional module that learns weight maps for fusing the two saliency predictions from these two streams. A tailored alternate scheme is designed to train these deep networks by fine-tuning pre-trained baseline models. Finally, a customized fully connected CRF model incorporating a salient contour feature embedding can be optionally applied as a post-processing step to improve spatial coherence and contour positioning in the fused result from these two streams. Extensive experiments on six benchmark datasets demonstrate that our proposed model can significantly outperform the state of the art in terms of all popular evaluation metrics.

0
5
下载
预览

As we move towards large-scale object detection, it is unrealistic to expect annotated training data for all object classes at sufficient scale, and so methods capable of unseen object detection are required. We propose a novel zero-shot method based on training an end-to-end model that fuses semantic attribute prediction with visual features to propose object bounding boxes for seen and unseen classes. While we utilize semantic features during training, our method is agnostic to semantic information for unseen classes at test-time. Our method retains the efficiency and effectiveness of YOLO for objects seen during training, while improving its performance for novel and unseen objects. The ability of state-of-art detection methods to learn discriminative object features to reject background proposals also limits their performance for unseen objects. We posit that, to detect unseen objects, we must incorporate semantic information into the visual domain so that the learned visual features reflect this information and leads to improved recall rates for unseen objects. We test our method on PASCAL VOC and MS COCO dataset and observed significant improvements on the average precision of unseen classes.

0
5
下载
预览

Object detection is a major challenge in computer vision, involving both object classification and object localization within a scene. While deep neural networks have been shown in recent years to yield very powerful techniques for tackling the challenge of object detection, one of the biggest challenges with enabling such object detection networks for widespread deployment on embedded devices is high computational and memory requirements. Recently, there has been an increasing focus in exploring small deep neural network architectures for object detection that are more suitable for embedded devices, such as Tiny YOLO and SqueezeDet. Inspired by the efficiency of the Fire microarchitecture introduced in SqueezeNet and the object detection performance of the single-shot detection macroarchitecture introduced in SSD, this paper introduces Tiny SSD, a single-shot detection deep convolutional neural network for real-time embedded object detection that is composed of a highly optimized, non-uniform Fire sub-network stack and a non-uniform sub-network stack of highly optimized SSD-based auxiliary convolutional feature layers designed specifically to minimize model size while maintaining object detection performance. The resulting Tiny SSD possess a model size of 2.3MB (~26X smaller than Tiny YOLO) while still achieving an mAP of 61.3% on VOC 2007 (~4.2% higher than Tiny YOLO). These experimental results show that very small deep neural network architectures can be designed for real-time object detection that are well-suited for embedded scenarios.

0
7
下载
预览

In this paper, we study object detection using a large pool of unlabeled images and only a few labeled images per category, named "few-example object detection". The key challenge consists in generating trustworthy training samples as many as possible from the pool. Using few training examples as seeds, our method iterates between model training and high-confidence sample selection. In training, easy samples are generated first and, then the poorly initialized model undergoes improvement. As the model becomes more discriminative, challenging but reliable samples are selected. After that, another round of model improvement takes place. To further improve the precision and recall of the generated training samples, we embed multiple detection models in our framework, which has proven to outperform the single model baseline and the model ensemble method. Experiments on PASCAL VOC'07, MS COCO'14, and ILSVRC'13 indicate that by using as few as three or four samples selected for each category, our method produces very competitive results when compared to the state-of-the-art weakly-supervised approaches using a large number of image-level labels.

0
6
下载
预览

Single Shot MultiBox Detector (SSD) is one of the fastest algorithms in the current object detection field, which uses fully convolutional neural network to detect all scaled objects in an image. Deconvolutional Single Shot Detector (DSSD) is an approach which introduces more context information by adding the deconvolution module to SSD. And the mean Average Precision (mAP) of DSSD on PASCAL VOC2007 is improved from SSD's 77.5% to 78.6%. Although DSSD obtains higher mAP than SSD by 1.1%, the frames per second (FPS) decreases from 46 to 11.8. In this paper, we propose a single stage end-to-end image detection model called ESSD to overcome this dilemma. Our solution to this problem is to cleverly extend better context information for the shallow layers of the best single stage (e.g. SSD) detectors. Experimental results show that our model can reach 79.4% mAP, which is higher than DSSD and SSD by 0.8 and 1.9 points respectively. Meanwhile, our testing speed is 25 FPS in Titan X GPU which is more than double the original DSSD.

0
3
下载
预览
小贴士
相关论文
Shuhan Chen,Xiuli Tan,Ben Wang,Xuelong Hu
9+阅读 · 2019年4月15日
Tao Kong,Fuchun Sun,Huaping Liu,Yuning Jiang,Jianbo Shi
5+阅读 · 2019年4月8日
Hengfui Liau,Nimmagadda Yamini,YengLiong Wong
3+阅读 · 2018年10月16日
Zhishuai Zhang,Siyuan Qiao,Cihang Xie,Wei Shen,Bo Wang,Alan L. Yuille
11+阅读 · 2018年4月8日
Guanbin Li,Yizhou Yu
5+阅读 · 2018年3月30日
Pengkai Zhu,Hanxiao Wang,Tolga Bolukbasi,Venkatesh Saligrama
5+阅读 · 2018年3月19日
Alexander Wong,Mohammad Javad Shafiee,Francis Li,Brendan Chwyl
7+阅读 · 2018年2月19日
Xuanyi Dong,Liang Zheng,Fan Ma,Yi Yang,Deyu Meng
6+阅读 · 2018年2月14日
Liwen Zheng,Canmiao Fu,Yong Zhao
3+阅读 · 2018年1月18日
相关VIP内容
专知会员服务
45+阅读 · 2020年3月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
31+阅读 · 2019年10月10日
相关资讯
SSD多盒实时目标检测教程
论智
13+阅读 · 2018年4月5日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
10+阅读 · 2018年3月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
14+阅读 · 2017年12月17日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
7+阅读 · 2017年12月8日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
6+阅读 · 2017年12月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
16+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
17+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
9+阅读 · 2017年9月1日
Top