Deep neural networks could be fooled by adversarial examples with trivial differences to original samples. To keep the difference imperceptible in human eyes, researchers bound the adversarial perturbations by the $\ell_\infty$ norm, which is now commonly served as the standard to align the strength of different attacks for a fair comparison. However, we propose that using the $\ell_\infty$ norm alone is not sufficient in measuring the attack strength, because even with a fixed $\ell_\infty$ distance, the $\ell_2$ distance also greatly affects the attack transferability between models. Through the discovery, we reach more in-depth understandings towards the attack mechanism, i.e., several existing methods attack black-box models better partly because they craft perturbations with 70% to 130% larger $\ell_2$ distances. Since larger perturbations naturally lead to better transferability, we thereby advocate that the strength of attacks should be simultaneously measured by both the $\ell_\infty$ and $\ell_2$ norm. Our proposal is firmly supported by extensive experiments on ImageNet dataset from 7 attacks, 4 white-box models, and 9 black-box models.


翻译:深神经网络可能会被与原始样本存在微小差异的对抗性例子所愚弄。 为了保持人类眼中无法察觉的差别, 研究人员将对抗性扰动按$\ell\<unk> infty$规范绑在一起, 现在通常使用美元=infty$规范作为标准来对不同攻击的强度进行匹配, 以便公平比较。 但是, 我们提议, 光用$\ell\<unk> infty$标准来测量攻击强度是不够的, 因为即使固定的 $\ell\<unk> infty$距离, $_ ell_2$的距离也会大大影响模型之间的攻击可转移性。 通过发现, 我们能够更深入地了解攻击机制, 也就是说, 一些现有的方法袭击黑盒模型, 部分是因为他们制造了70%到130%的冲击力, 更大的 $\ell_2美元距离。 由于更大的扰动自然导致更好的可转移性, 我们因此主张攻击强度应该同时用 $\ell\\ inty$和 $\\ ell_2$2$规范来测量攻击性。 我们的提议得到了来自7 攻击的黑模型的广泛实验的支持。</s>

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
100+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2020年12月10日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员