Online Travel Platforms are virtual two-sided marketplaces where guests search for accommodations and accommodation providers list their properties such as hotels and vacation rentals. The large majority of hotels are rated by official institutions with a number of stars indicating the quality of service they provide. It is a simple and effective mechanism that contributes to match supply with demand by helping guests to find options meeting their criteria and accommodation suppliers to market their product to the right segment directly impacting the number of transactions on the platform. Unfortunately, no similar rating system exists for the large majority of vacation rentals, making it difficult for guests to search and compare options and hard for vacation rentals suppliers to market their product effectively. In this work we describe a machine learned quality rating system for vacation rentals. The problem is challenging, mainly due to explainability requirements and the lack of ground truth. We present techniques to address these challenges and empirical evidence of their efficacy. Our system was successfully deployed and validated through Online Controlled Experiments performed in Booking. com, a large Online Travel Platform, and running for more than one year, impacting more than a million accommodations and millions of guests.


翻译:在线旅行平台是虚拟的双面市场,客客人们在网上寻找住宿和住宿供应商寻找其房产,如旅馆和休假租赁等。大多数酒店被官方机构评级,官方机构有数个明星,显示其服务质量。这是一个简单而有效的机制,通过帮助客人们找到符合其标准的备选方案和住宿供应商将产品推销到右部分直接影响到平台交易数量,从而有助于满足需求。不幸的是,绝大多数休假租赁都不存在类似的评级制度,使客人们难以搜索和比较各种选择,也难以让度假租赁供应商有效销售产品。在这项工作中,我们描述了一个机器学习的度假租赁质量评级制度。主要由于可解释性要求和缺乏地面真相,问题十分棘手。我们提出了应对这些挑战的技术及其功效的经验证据。我们的系统通过在预订.comm(一个大型在线旅行平台)进行的在线控制实验成功部署和验证,并运行了一年以上,影响到100多万个住宿和数百万名游客。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员