Post-quantum cryptographic (PQC) algorithms, especially those based on the learning with errors (LWE) problem, have been subjected to several physical attacks in the recent past. Although the attacks broadly belong to two classes - passive side-channel attacks and active fault attacks, the attack strategies vary significantly due to the inherent complexities of such algorithms. Exploring further attack surfaces is, therefore, an important step for eventually securing the deployment of these algorithms. Also, it is important to test the robustness of the already proposed countermeasures in this regard. In this work, we propose a new fault attack on side-channel secure masked implementation of LWE-based key-encapsulation mechanisms (KEMs) exploiting fault propagation. The attack typically originates due to an algorithmic modification widely used to enable masking, namely the Arithmetic-to-Boolean (A2B) conversion. We exploit the data dependency of the adder carry chain in A2B and extract sensitive information, albeit masking (of arbitrary order) being present. As a practical demonstration of the exploitability of this information leakage, we show key recovery attacks of Kyber, although the leakage also exists for other schemes like Saber. The attack on Kyber targets the decapsulation module and utilizes Belief Propagation (BP) for key recovery. To the best of our knowledge, it is the first attack exploiting an algorithmic component introduced to ease masking rather than only exploiting the randomness introduced by masking to obtain desired faults (as done by Delvaux). Finally, we performed both simulated and electromagnetic (EM) fault-based practical validation of the attack for an open-source first-order secure Kyber implementation running on an STM32 platform.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员