In the dynamic landscape of online businesses, recommender systems are pivotal in enhancing user experiences. While traditional approaches have relied on static supervised learning, the quest for adaptive, user-centric recommendations has led to the emergence of the formulation of contextual bandits. This tutorial investigates the contextual bandits as a powerful framework for personalized recommendations. We delve into the challenges, advanced algorithms and theories, collaborative strategies, and open challenges and future prospects within this field. Different from existing related tutorials, (1) we focus on the exploration perspective of contextual bandits to alleviate the ``Matthew Effect'' in the recommender systems, i.e., the rich get richer and the poor get poorer, concerning the popularity of items; (2) in addition to the conventional linear contextual bandits, we will also dedicated to neural contextual bandits which have emerged as an important branch in recent years, to investigate how neural networks benefit contextual bandits for personalized recommendation both empirically and theoretically; (3) we will cover the latest topic, collaborative neural contextual bandits, to incorporate both user heterogeneity and user correlations customized for recommender system; (4) we will provide and discuss the new emerging challenges and open questions for neural contextual bandits with applications in the personalized recommendation, especially for large neural models.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月8日
Arxiv
76+阅读 · 2022年3月26日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年2月8日
Arxiv
76+阅读 · 2022年3月26日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员