Interference--in which a unit's outcome is affected by the treatment of other units--poses significant challenges for the identification and estimation of causal effects. Most existing methods for estimating interference effects assume that the interference networks are known. In many practical settings, this assumption is unrealistic as such networks are typically latent. To address this challenge, we propose a novel framework for identifying and estimating heterogeneous group-level interference effects without requiring a known interference network. Specifically, we assume a shared latent community structure between the observed network and the unknown interference network. We demonstrate that interference effects are identifiable if and only if group-level interference effects are heterogeneous, and we establish the consistency and asymptotic normality of the maximum likelihood estimator (MLE). To handle the intractable likelihood function and facilitate the computation, we propose a Bayesian implementation and show that the posterior concentrates around the MLE. A series of simulation studies demonstrate the effectiveness of the proposed method and its superior performance compared with competitors. We apply our proposed framework to the encounter data of stroke patients from the California Department of Healthcare Access and Information (HCAI) and evaluate the causal interference effects of certain intervention in one hospital on the outcomes of other hospitals.


翻译:干扰效应——即一个单元的结果受到其他单元处理的影响——给因果效应的识别与估计带来了重大挑战。现有的大多数估计干扰效应的方法都假设干扰网络是已知的。然而,在许多实际场景中,这一假设并不现实,因为此类网络通常是潜在的。为了应对这一挑战,我们提出了一种新颖的框架,用于识别和估计异质性群体层面的干扰效应,而无需已知的干扰网络。具体而言,我们假设观测网络与未知的干扰网络之间存在共享的潜在社区结构。我们证明,当且仅当群体层面的干扰效应具有异质性时,干扰效应是可识别的,并且我们建立了最大似然估计量(MLE)的一致性和渐近正态性。为了处理难以处理的似然函数并促进计算,我们提出了一种贝叶斯实现方法,并证明后验分布会集中在MLE附近。一系列模拟研究证明了所提方法的有效性及其相较于竞争方法的优越性能。我们将所提出的框架应用于加州医疗保健获取与信息部(HCAI)的脑卒中患者接触数据,评估了某家医院特定干预措施对其他医院结果的因果干扰效应。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员