This paper addresses the problem of estimating causal effects when adjustment variables in the back-door or front-door criterion are partially observed. For such scenarios, we derive bounds on the causal effects by solving two non-linear optimization problems, and demonstrate that the bounds are sufficient. Using this optimization method, we propose a framework for dimensionality reduction that allows one to trade bias for estimation power, and demonstrate its performance using simulation studies.


翻译:本文件探讨了在部分遵守后门或前门标准中的调整变量时估计因果影响的问题。对于这些情况,我们通过解决两个非线性优化问题来得出因果关系的界限,并表明界限已经足够。我们使用这种优化方法提出了一个维度削减框架,允许人们用偏差来交换估计力,并利用模拟研究来展示其性能。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Top
微信扫码咨询专知VIP会员