Given an $n$-point metric space $(M,d)$, {\sc metric $1$-median} asks for a point $p\in M$ minimizing $\sum_{x\in M}\,d(p,x)$. We show that for each computable function $f\colon \mathbb{Z}^+\to\mathbb{Z}^+$ satisfying $f(n)=\omega(1)$, {\sc metric $1$-median} has a deterministic, $o(n)$-query, $o(f(n)\cdot\log n)$-approximation and nonadaptive algorithm. Previously, no deterministic $o(n)$-query $o(n)$-approximation algorithms are known for {\sc metric $1$-median}. On the negative side, we prove each deterministic $O(n)$-query algorithm for {\sc metric $1$-median} to be not $(\delta\log n)$-approximate for a sufficiently small constant $\delta>0$. We also refute the existence of deterministic $o(n)$-query $O(\log n)$-approximation algorithms.


翻译:$( m, d), d( p, x) 美元。 我们显示, 对于每个可计算功能, $( croom) $( mathb* t\\ mathb* 美元) 美元满足 $( n) ⁇ omega(1) 美元, $( c) 公吨 $( 美元) 中值), $( f) 美元( 美元), 美元( 美元( 美元), 美元( 美元( 美元), 美元( 美元( 美元) ), 美元( 美元( 美元) 和不适应算法。 以前, 美元( 美元) 美元( 美元) 的确定性( 美元), 美元( 美元) 的确定性( 美元) 。 在负面方面, 我们证明 美元( 美元( 美元) 的确定 美元( 美元( 美元) 美元( 美元), 美元( 美元) 美元( 美元( 美元) 美元( 美元) 美元( 美元) 也证明 美元( 美元) 美元( 美元) 美元( 我们- ) ) 确定一个足够( 美元) 美元( 美元) 的确定 。 ( 美元( 美元) 美元) 美元) 。

0
下载
关闭预览

相关内容

专知会员服务
83+阅读 · 2020年12月5日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员