As the focus on security of Artificial Intelligence (AI) is becoming paramount, research on crafting and inserting optimal adversarial perturbations has become increasingly critical. In the malware domain, this adversarial sample generation relies heavily on the accuracy and placement of crafted perturbation with the goal of evading a trained classifier. This work focuses on applying explainability techniques to enhance the adversarial evasion attack on a machine-learning-based Windows PE malware detector. The explainable tool identifies the regions of PE malware files that have the most significant impact on the decision-making process of a given malware detector, and therefore, the same regions can be leveraged to inject the adversarial perturbation for maximum efficiency. Profiling all the PE malware file regions based on their impact on the malware detector's decision enables the derivation of an efficient strategy for identifying the optimal location for perturbation injection. The strategy should incorporate the region's significance in influencing the malware detector's decision and the sensitivity of the PE malware file's integrity towards modifying that region. To assess the utility of explainable AI in crafting an adversarial sample of Windows PE malware, we utilize the DeepExplainer module of SHAP for determining the contribution of each region of PE malware to its detection by a CNN-based malware detector, MalConv. Furthermore, we analyzed the significance of SHAP values at a more granular level by subdividing each section of Windows PE into small subsections. We then performed an adversarial evasion attack on the subsections based on the corresponding SHAP values of the byte sequences.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员