Parametric Markov chains (pMCs) are Markov chains (MCs) with symbolic probabilities. A pMC encodes a family of MCs, where each member is obtained by replacing parameters with constants. The parameters allow encoding dependencies between transitions, which sets pMCs apart from interval MCs. The verification problem for pMCs asks whether each MC in the corresponding family satisfies a given temporal specification. The state-of-the-art approach for this problem is parameter lifting (PL) -- an abstraction-refinement loop that abstracts the pMC to a non-parametric model analyzed with standard probabilistic model checking techniques. This paper presents two key improvements to tackle the main limitations of PL. First, we introduce generalized parameter lifting (GPL) to lift various restrictive assumptions made by PL. Second, we present a big-step transformation algorithm that reduces parameter dependencies in pMCs and, therefore, results in tighter approximations. Experiments show that GPL is widely applicable and that the big-step transformation accelerates pMC verification by up to orders of magnitude.


翻译:参数化马尔可夫链(pMC)是带有符号化概率的马尔可夫链(MC)。一个pMC编码了一个MC族,其中每个成员通过将参数替换为常数而获得。参数允许编码转移之间的依赖关系,这使得pMC区别于区间MC。pMC的验证问题询问对应族中的每个MC是否满足给定的时序规约。该问题的前沿方法是参数提升(PL)——一种抽象-精化循环,它将pMC抽象为一个非参数化模型,并使用标准概率模型检验技术进行分析。本文提出了两项关键改进以应对PL的主要局限。首先,我们引入广义参数提升(GPL)以解除PL所作的各种限制性假设。其次,我们提出一种大步变换算法,该算法能减少pMC中的参数依赖,从而得到更紧致的近似。实验表明,GPL具有广泛适用性,且大步变换能将pMC验证速度提升高达数个数量级。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员