Low-light images captured in the real world are inevitably corrupted by sensor noise. Such noise is spatially variant and highly dependent on the underlying pixel intensity, deviating from the oversimplified assumptions in conventional denoising. Existing light enhancement methods either overlook the important impact of real-world noise during enhancement, or treat noise removal as a separate pre- or post-processing step. We present Coordinated Enhancement for Real-world Low-light Noisy Images (CERL), that seamlessly integrates light enhancement and noise suppression parts into a unified and physics-grounded optimization framework. For the real low-light noise removal part, we customize a self-supervised denoising model that can easily be adapted without referring to clean ground-truth images. For the light enhancement part, we also improve the design of a state-of-the-art backbone. The two parts are then joint formulated into one principled plug-and-play optimization. Our approach is compared against state-of-the-art low-light enhancement methods both qualitatively and quantitatively. Besides standard benchmarks, we further collect and test on a new realistic low-light mobile photography dataset (RLMP), whose mobile-captured photos display heavier realistic noise than those taken by high-quality cameras. CERL consistently produces the most visually pleasing and artifact-free results across all experiments. Our RLMP dataset and codes are available at: https://github.com/VITA-Group/CERL.


翻译:在现实世界中拍摄的低光图像不可避免地被传感器噪音腐蚀。这种噪音是空间变异的,高度依赖于基本的像素强度,偏离了常规降压中过于简化的假设。现有的光增强方法要么忽视了在增强过程中真实世界噪音的重要影响,要么将噪音清除作为一个单独的处理前或处理后步骤处理。我们介绍了现实世界低光噪音图像的协调增强(CERL),将光增强和噪音抑制部分无缝地纳入统一和物理地基优化框架。对于真正的低光噪音去除部分,我们定制了一种自我监督的调消音模型,这种模型可以很容易调整,而不必提及清洁的地面光亮图像。对于增强光部分,我们还改进了状态的脊椎设计。然后将这两个部分合起来,形成一个有原则性的插件和游戏优化。我们的方法与最先进的低光度增强方法在质量和数量上进行了比较。除了标准基准外,我们还在新的现实的低光度的CER/降温调调调模型上采集和测试了我们最新的低光度的更清晰的移动摄影记录系统,其高水平的图像显示,在高水平的 R-ro光-roal-cal-rocal-rmal-laxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2019年1月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员