Preserving the privacy and security of big data in the context of cloud computing, while maintaining a certain level of efficiency of its processing remains to be a subject, open for improvement. One of the most popular applications epitomizing said concerns is found to be useful in genome analysis. This work proposes a secure multi-label tumor classification method using homomorphic encryption, whereby two different machine learning algorithms, SVM and XGBoost, are used to classify the encrypted genome data of different tumor types.
翻译:在云计算方面保护海量数据的隐私和安全,同时保持其处理效率的某种水平,仍是一个主题,有待改进。一个最流行的反映上述关切的应用程序被认为对基因组分析有用。这项工作建议采用一种安全的多标签肿瘤分类方法,使用同质加密,使用两种不同的机器学习算法,即SVM和XGBoost,对不同类型肿瘤的加密基因组数据进行分类。