We introduce Humans-Junior, a 3.8B model that matches GPT-4o on the FACTS Grounding public subset within a $\pm 5$ pp equivalence margin. Results. On Q1--Q500 under identical judges, GPT-4o scores 73.5% (95% CI 69.5--77.2) and Humans-Junior 72.7% (95% CI 68.7--76.5); the paired difference is 0.8 pp (bootstrap 95% CI $-3.1$ to $+4.7$; permutation $p = 0.72$; Cohen's $d = 0.023$). TOST establishes equivalence at $\pm 5$ pp (not at $\pm 3$ pp). When purchased as managed APIs, Humans-Junior's base model (Phi-3.5-mini-instruct) is $\approx 19\times$ less expensive than GPT-4o on Microsoft AI Foundry pricing; self-hosted or edge deployments can drive incremental inference cost toward zero. Measured vs estimated pricing sources are tabulated in Appendix E. Method. Our approach combines minimal directed "Exoskeleton Reasoning" scaffolds with behavioral fine-tuning that teaches protocol compliance (epistemic discipline) rather than domain answers. Fine-tuning alone adds little; combined, they synergize (+17.7 pp, $p < 0.001$) and reduce variance ($\approx 25\%$). In prompt-only settings on frontier models (Q1--Q100; non-comparable), directed reasoning improved GPT-4o by +11.8 pp to 85.3% and Gemini-2.5-Pro by +5.0 pp to 93.3% (baseline 88.3%, $n = 100$); see Section~5. TL;DR. A 3.8B model achieves GPT-4o-level FACTS accuracy (equivalent within $\pm 5$ pp on Q1--Q500). Cloud pricing shows $\approx 19\times$ lower cost versus GPT-4o, and self-hosted/edge deployments can approach zero marginal cost. Pricing sources are listed in Appendix E. Frontier prompt-only gains (Q1--Q100; non-comparable) and optimized-prompt exploratory results under earlier judges are summarized in Appendix F. Keywords: Small Language Models, Factual Grounding, Directed Reasoning, Fine-Tuning, Model Alignment, Cost-Efficient AI


翻译:我们介绍了Humains-Junior,这是一个38亿参数的模型,在FACTS Grounding公共子集上以±5个百分点的等效区间与GPT-4o持平。结果:在相同评判标准下的Q1–Q500问题上,GPT-4o得分为73.5%(95%置信区间69.5–77.2),Humains-Junior为72.7%(95%置信区间68.7–76.5);配对差异为0.8个百分点(自助法95%置信区间-3.1至+4.7;置换检验p=0.72;科恩d=0.023)。TOST检验在±5个百分点区间内确立了等效性(在±3个百分点区间内未确立)。若以托管API形式购买,Humains-Junior的基础模型(Phi-3.5-mini-instruct)在微软AI Foundry定价上比GPT-4o便宜约19倍;自托管或边缘部署可将增量推理成本趋近于零。实测与预估定价来源详见附录E。方法:我们的方法结合了最小化定向“外骨骼推理”框架与行为微调,后者教授协议遵循(认知纪律)而非领域答案。单独微调效果甚微;两者结合产生协同效应(+17.7个百分点,p<0.001)并降低方差(约25%)。在前沿模型的纯提示设置中(Q1–Q100;不可比),定向推理将GPT-4o提升+11.8个百分点至85.3%,将Gemini-2.5-Pro提升+5.0个百分点至93.3%(基线88.3%,n=100);参见第5节。总结:一个38亿参数模型实现了GPT-4o级别的FACTS准确性(在Q1–Q500上±5个百分点区间内等效)。云端定价显示其成本比GPT-4o低约19倍,自托管/边缘部署可趋近于零边际成本。定价来源列于附录E。前沿纯提示增益(Q1–Q100;不可比)及早期评判标准下的优化提示探索结果汇总于附录F。关键词:小型语言模型,事实锚定,定向推理,微调,模型对齐,成本高效人工智能

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Anomalous Instance Detection in Deep Learning: A Survey
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员