Since the Lipschitz properties of CNN are widely considered to be related to adversarial robustness, we theoretically characterize the $\ell_1$ norm and $\ell_\infty$ norm of 2D multi-channel convolutional layers and provide efficient methods to compute the exact $\ell_1$ norm and $\ell_\infty$ norm. Based on our theorem, we propose a novel regularization method termed norm decay, which can effectively reduce the norms of convolutional layers and fully-connected layers. Experiments show that norm-regularization methods, including norm decay, weight decay, and singular value clipping, can improve generalization of CNNs. However, they can slightly hurt adversarial robustness. Observing this unexpected phenomenon, we compute the norms of layers in the CNNs trained with three different adversarial training frameworks and surprisingly find that adversarially robust CNNs have comparable or even larger layer norms than their non-adversarially robust counterparts. Furthermore, we prove that under a mild assumption, adversarially robust classifiers can be achieved, and can have an arbitrarily large Lipschitz constant. For this reason, enforcing small norms on CNN layers may be neither necessary nor effective in achieving adversarial robustness. The code is available at https://github.com/youweiliang/norm_robustness.


翻译:由于CNN的利普申茨特性被广泛认为与对抗性强力有关,因此,我们从理论上将2D多渠道共变层的2D多渠道共振层的规范与1美元标准与1美元标准与1美元标准相提并论,并提供计算准确的1美元标准与1美元标准的有效方法。根据我们的理论,我们建议一种新型的规范化方法,称为规范衰败,这可以有效减少共振层和完全相连层的规范化规范。实验表明,规范化方法,包括规范腐蚀、重量腐蚀和单值剪切,可以改善CNN的通用性。然而,它们可以略微伤害对抗性强强的规范。观察这种意想不到的现象,我们用三种不同的对抗性培训框架来计算CNN的规范。令人惊讶地发现,有敌意的CNNCNN的规范比非对抗性强强的对立层的规范可比甚至更大。此外,我们证明,在一种温和的假设下,可以实现稳健的分类,并且可以任意地使CNN得到大 Lipschitz/com的常态性。为此,因此,在CNN的规范中执行强势性规范。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
10+阅读 · 2018年3月23日
Top
微信扫码咨询专知VIP会员