In decentralized federated learning (DFL), the presence of abnormal clients, often caused by noisy or poisoned data, can significantly disrupt the learning process and degrade the overall robustness of the model. Previous methods on this issue often require a sufficiently large number of normal neighboring clients or prior knowledge of reliable clients, which reduces the practical applicability of DFL. To address these limitations, we develop here a novel adaptive DFL (aDFL) approach for robust estimation. The key idea is to adaptively adjust the learning rates of clients. By assigning smaller rates to suspicious clients and larger rates to normal clients, aDFL mitigates the negative impact of abnormal clients on the global model in a fully adaptive way. Our theory does not put any stringent conditions on neighboring nodes and requires no prior knowledge. A rigorous convergence analysis is provided to guarantee the oracle property of aDFL. Extensive numerical experiments demonstrate the superior performance of the aDFL method.


翻译:在去中心化联邦学习(DFL)中,异常客户端(通常由噪声或污染数据导致)的存在会显著干扰学习过程并降低模型的整体鲁棒性。针对此问题的现有方法通常需要足够数量的正常相邻客户端或对可靠客户端的先验知识,这限制了DFL的实际适用性。为克服这些局限,本文提出一种新颖的自适应DFL(aDFL)方法用于鲁棒估计。其核心思想是自适应调整客户端的学习率:通过为可疑客户端分配较小的学习率、为正常客户端分配较大的学习率,aDFL以完全自适应的方式减轻异常客户端对全局模型的负面影响。我们的理论分析不对相邻节点施加严格条件,且无需任何先验知识。严格的收敛性分析证明了aDFL的Oracle性质。大量数值实验验证了aDFL方法的优越性能。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员