During the past decade, neural networks have become prominent in Natural Language Processing (NLP), notably for their capacity to learn relevant word representations from large unlabeled corpora. These word embeddings can then be transferred and finetuned for diverse end applications during a supervised training phase. More recently, in 2018, the transfer of entire pretrained Language Models and the preservation of their contextualization capacities enabled to reach unprecedented performance on virtually every NLP benchmark, sometimes even outperforming human baselines. However, as models reach such impressive scores, their comprehension abilities still appear as shallow, which reveal limitations of benchmarks to provide useful insights on their factors of performance and to accurately measure understanding capabilities. In this thesis, we study the behaviour of state-of-the-art models regarding generalization to facts unseen during training in two important Information Extraction tasks: Named Entity Recognition (NER) and Relation Extraction (RE). Indeed, traditional benchmarks present important lexical overlap between mentions and relations used for training and evaluating models, whereas the main interest of Information Extraction is to extract previously unknown information. We propose empirical studies to separate performance based on mention and relation overlap with the training set and find that pretrained Language Models are mainly beneficial to detect unseen mentions, in particular out-of-domain. While this makes them suited for real use cases, there is still a gap in performance between seen and unseen mentions that hurts generalization to new facts. In particular, even state-of-the-art ERE models rely on a shallow retention heuristic, basing their prediction more on arguments surface forms than context.


翻译:在过去十年中,自然语言处理(NLP)中,神经网络变得十分突出,特别是它们有能力从大型未贴标签的团体中学习相关的文字表述,这些字嵌入器随后可以在监督的培训阶段转让和微调,以适应各种终端应用。最近,在2018年,转让了全部经过预先训练的语言模型,并维护了这些模型的背景化能力,使得几乎每一个自然语言处理基准都能够达到前所未有的业绩,有时甚至超过人的基线。然而,随着模型达到如此令人印象深刻的分数,它们的理解能力仍然显得浅浅薄,暴露出基准的局限性,无法提供关于其业绩要素的有用洞见和准确衡量理解能力。在这个理论中,我们研究了在两项重要的信息提取任务:实体识别(NER)和关系(RE)的培训过程中所发现的关于一般语言模型和用于培训和评价模型的关系之间在词汇上存在着重要的重叠,而信息提取模型的主要兴趣是提取先前未知的信息,我们提议进行实证性研究,以便根据提及和与培训所设定的表面标准重叠之处进行单独分析。我们发现,在常规的表面中,主要用于实地研究这些案例。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员