With the increasing demand for oriented object detection e.g. in autonomous driving and remote sensing, the oriented annotation has become a labor-intensive work. To make full use of existing horizontally annotated datasets and reduce the annotation cost, a weakly-supervised detector H2RBox for learning the rotated box (RBox) from the horizontal box (HBox) has been proposed and received great attention. This paper presents a new version, H2RBox-v2, to further bridge the gap between HBox-supervised and RBox-supervised oriented object detection. While exploiting axisymmetry via flipping and rotating consistencies is available through our theoretical analysis, H2RBox-v2, using a weakly-supervised branch similar to H2RBox, is embedded with a novel self-supervised branch that learns orientations from the symmetry inherent in the image of objects. Complemented by modules to cope with peripheral issues, e.g. angular periodicity, a stable and effective solution is achieved. To our knowledge, H2RBox-v2 is the first symmetry-supervised paradigm for oriented object detection. Compared to H2RBox, our method is less susceptible to low annotation quality and insufficient training data, which in such cases is expected to give a competitive performance much closer to fully-supervised oriented object detectors. Specifically, the performance comparison between H2RBox-v2 and Rotated FCOS on DOTA-v1.0/1.5/2.0 is 72.31%/64.76%/50.33% vs. 72.44%/64.53%/51.77%, 89.66% vs. 88.99% on HRSC, and 42.27% vs. 41.25% on FAIR1M.


翻译:随着对定向物体检测的需求不断增加,例如在自动驾驶和遥感方面,定向标注已成为一项劳动密集型工作。为充分利用现有的水平标注数据集并减少标注成本,提出了一种弱监督的检测器H2RBox,用于从水平框(HBox)中学习旋转框(RBox),并受到了广泛关注。本文提出了一个新版本H2RBox-v2,进一步弥合了HBox监督和RBox监督定向物体检测之间的差距。在利用翻转和旋转一致性通过我们的理论分析时,H2RBox-v2使用类似于H2RBox的弱监督分支,内嵌有一种新颖的自监督分支,从物体的图像固有对称性中学习方向。由于配备了用于处理边缘问题的模块,例如角周期性,因此实现了稳定和有效的解决方案。据我们所知,H2RBox-v2是面向定向物体检测的第一个对称监督范例。与H2RBox相比,我们的方法对低标注质量和训练数据不足的影响较小,在这种情况下,我们预计可以获得接近完全监督的定向物体检测器的竞争性表现。具体而言,在DOTA-v1.0/1.5/2.0上,H2RBox-v2与旋转式FCOS的性能比较分别为72.31%/64.76%/50.33%与72.44%/64.53%/51.77%,在HRSC上分别为89.66%与88.99%,在FAIR1M上为42.27%和41.25%。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻MixTraining: 一种全新的物体检测训练范式
专知会员服务
11+阅读 · 2021年12月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
NeurIPS 2021 | 寻MixTraining: 一种全新的物体检测训练范式
专知会员服务
11+阅读 · 2021年12月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员