Kernel regression is an important nonparametric learning algorithm with an equivalence to neural networks in the infinite-width limit. Understanding its generalization behavior is thus an important task for machine learning theory. In this work, we provide a theory of the inductive bias and generalization of kernel regression using a new measure characterizing the "learnability" of a given target function. We prove that a kernel's inductive bias can be characterized as a fixed budget of learnability, allocated to its eigenmodes, that can only be increased with the addition of more training data. We then use this rule to derive expressions for the mean and covariance of the predicted function and gain insight into the overfitting and adversarial robustness of kernel regression and the hardness of the classic parity problem. We show agreement between our theoretical results and both kernel regression and wide finite networks on real and synthetic learning tasks.
翻译:内核回归是一种重要的非对称学习算法, 与无限宽限的神经网络等同。 因此, 了解其一般化行为是机器学习理论的一项重要任务 。 在这项工作中, 我们提供内核回归的感应偏向和普遍性理论, 使用一种新的测量方法来描述特定目标函数的“ 可忽略性 ” 。 我们证明内核的感应偏向可以被定性为可学习性的固定预算, 分配给它的脑细胞, 只有在增加更多的培训数据后才能增加。 我们随后使用这一规则来为预测函数的平均值和变量产生表达方式, 并深入了解内核回归的过度和对抗性强势, 以及典型的对等问题。 我们显示了我们的理论结果和内核回归以及大量有限网络在真实和合成学习任务上的一致。