The capabilities of a robot will be increased significantly by exploiting throwing behavior. In particular, throwing will enable robots to rapidly place the object into the target basket, located outside its feasible kinematic space, without traveling to the desired location. In previous approaches, the robot often learned a parameterized throwing kernel through analytical approaches, imitation learning, or hand-coding. There are many situations in which such approaches do not work/generalize well due to various object shapes, heterogeneous mass distribution, and also obstacles that might be presented in the environment. It is obvious that a method is needed to modulate the throwing kernel through its meta parameters. In this paper, we tackle object throwing problem through a deep reinforcement learning approach that enables robots to precisely throw objects into moving baskets while there are obstacles obstructing the path. To the best of our knowledge, we are the first group that addresses throwing objects with obstacle avoidance. Such a throwing skill not only increases the physical reachability of a robot arm but also improves the execution time. In particular, the robot detects the pose of the target object, basket, and obstacle at each time step, predicts the proper grasp configuration for the target object, and then infers appropriate parameters to throw the object into the basket. Due to safety constraints, we develop a simulation environment in Gazebo to train the robot and then use the learned policy in real-robot directly. To assess the performers of the proposed approach, we perform extensive sets of experiments in both simulation and real robots in three scenarios. Experimental results showed that the robot could precisely throw a target object into the basket outside its kinematic range and generalize well to new locations and objects without colliding with obstacles.


翻译:利用抛掷行为,机器人的能力将大大增强。 特别是, 抛掷将使机器人能够在可行的运动空间之外, 迅速将物体放在目标篮子中, 在可行的运动空间之外, 而不移动到理想位置 。 在以前的方法中, 机器人经常通过分析方法、 仿造学习或手码学习, 学到一个参数化的投掷内核。 在许多情况下, 这种方法由于各种物体形状、 混杂质量分布以及环境中可能出现的障碍而不能有效/ 推广。 显然, 投掷将使机器人能够迅速将物体放在目标篮子里, 并且位于其可行的运动空间里, 我们通过深厚的强化学习方法来解决抛掷物体的问题, 使机器人能够精确地把物体扔进篮子里, 同时又有障碍。 据我们所知, 我们是第一个解决扔扔弃物体避免障碍问题的群体。 这种投掷技巧不仅能增加机器人臂的物理可达性, 而且还能改善执行时间。 特别是, 机器人可以探测目标的外形、 篮子和障碍在每步步里, 我们用正确的轨道上, 预测正确的目标定位, 将目标定位到方向, 推动到方向, 方向, 推动到方向, 方向, 方向, 方向, 推动到方向, 推动方向, 方向, 推动正确到方向, 推动方向, 方向, 方向, 推到方向, 方向, 方向, 方向, 方向, 方向, 方向, 推到方向, 方向, 推到方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向, 方向,

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员