Large Language Models (LLMs) often exhibit factual inconsistencies and logical decay in extended, multi-turn dialogues, a challenge stemming from their reliance on static, pre-trained knowledge and an inability to reason adaptively over the dialogue history. Prevailing mitigation strategies, such as Retrieval-Augmented Generation (RAG) and agentic working memories, improve information recall but still engage with fundamentally static knowledge sources and follow pre-defined single reasoning path. This hinders their ability to preserve factual and logical consistency of their responses in multi-turn dialogues while the context evolves over time. To address this issue, we propose D-SMART, a model-agnostic framework designed to maintain multi-turn dialogue consistency by enabling LLMs to build and reason over a dynamic, structured representation of the conversational context. This is achieved via two synergistic components: (1) a Dynamic Structured Memory (DSM), which incrementally constructs and maintains an authoritative, OWL-compliant knowledge graph of the conversation; and (2) a Reasoning Tree (RT), which executes inferences as an explicit and traceable multi-step search over the graph. As the popular-used quality score (judged by GPT-4) can overlook logical flaws, we introduce new NLI-based metrics to better measure multi-turn dialogue consistency. Comprehensive experiments on the MT-Bench-101 benchmark show that D-SMART significantly outperforms state-of-the-art baselines, elevating the dialogue consistency score by over 48\% for both proprietary and open-source models, and notably improves the quality score of the latter by up to 10.1\%.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2023年2月7日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员