The need of predictive maintenance comes with an increasing number of incidents reported by monitoring systems and equipment/software users. In the front line, on-call engineers (OCEs) have to quickly assess the degree of severity of an incident and decide which service to contact for corrective actions. To automate these decisions, several predictive models have been proposed, but the most efficient models are opaque (say, black box), strongly limiting their adoption. In this paper, we propose an efficient black box model based on 170K incidents reported to our company over the last 7 years and emphasize on the need of automating triage when incidents are massively reported on thousands of servers running our product, an ERP. Recent developments in eXplainable Artificial Intelligence (XAI) help in providing global explanations to the model, but also, and most importantly, with local explanations for each model prediction/outcome. Sadly, providing a human with an explanation for each outcome is not conceivable when dealing with an important number of daily predictions. To address this problem, we propose an original data-mining method rooted in Subgroup Discovery, a pattern mining technique with the natural ability to group objects that share similar explanations of their black box predictions and provide a description for each group. We evaluate this approach and present our preliminary results which give us good hope towards an effective OCE's adoption. We believe that this approach provides a new way to address the problem of model agnostic outcome explanation.


翻译:需要预测性维护是因为监测系统和设备/软件用户报告的事件越来越多。在前线,待命工程师(OCEs)必须迅速评估事件的严重程度,并决定为纠正行动提供何种服务。为使这些决定自动化,提出了若干预测模型,但效率最高的模型不透明(例如,黑匣子),严重限制其采用。在本文中,我们提议了一个基于过去7年来向公司报告的170K事件的有效黑盒模型,并强调在大量报告运行我们产品的数千个服务器的事件时需要自动分类。在可移植人工智能(XAI)中,最近的动态有助于向模型提供全球解释,但也最重要的是,每个模型预测/结果都有当地解释。可悲的是,在处理大量日常预测时,提供对每一种结果作出解释的人是无法想象的。为了解决这个问题,我们建议了一种原始的数据挖掘方法,其根植于Glob Discoy,一种模式采矿技术,其自然能力为我们每个组合对象提供了一种类似的预测结果初步解释,而我们则提供了一种初步解释。

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年9月6日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月2日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员