We present the first real-world application of methods for improving neural machine translation (NMT) with human reinforcement, based on explicit and implicit user feedback collected on the eBay e-commerce platform. Previous work has been confined to simulation experiments, whereas in this paper we work with real logged feedback for offline bandit learning of NMT parameters. We conduct a thorough analysis of the available explicit user judgments---five-star ratings of translation quality---and show that they are not reliable enough to yield significant improvements in bandit learning. In contrast, we successfully utilize implicit task-based feedback collected in a cross-lingual search task to improve task-specific and machine translation quality metrics.


翻译:我们根据在eBay电子商务平台上收集的明确的和隐含的用户反馈,首次在现实世界应用改善神经机器翻译的方法,加强人的能力。先前的工作仅限于模拟实验,而在本文件中,我们的工作则是对离线土匪学习NMT参数的实时反馈进行实际记录。我们对现有明确的用户判断-五星级翻译质量评级进行透彻分析,并表明这些评级不够可靠,无法大大改进土匪学习。相比之下,我们成功地利用跨语言搜索工作中收集的基于任务的隐含反馈,以改进具体任务和机器翻译质量衡量标准。

3
下载
关闭预览

相关内容

机器翻译(Machine Translation)涵盖计算语言学和语言工程的所有分支,包含多语言方面。特色论文涵盖理论,描述或计算方面的任何下列主题:双语和多语语料库的编写和使用,计算机辅助语言教学,非罗马字符集的计算含义,连接主义翻译方法,对比语言学等。 官网地址:http://dblp.uni-trier.de/db/journals/mt/
因果图,Causal Graphs,52页ppt
专知会员服务
239+阅读 · 2020年4月19日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年6月1日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2018年3月28日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员