Predicting the object's 6D pose from a single RGB image is a fundamental computer vision task. Generally, the distance between transformed object vertices is employed as an objective function for pose estimation methods. However, projective geometry in the camera space is not considered in those methods and causes performance degradation. In this regard, we propose a new pose estimation system based on a projective grid instead of object vertices. Our pose estimation method, dynamic projective spatial transformer network (DProST), localizes the region of interest grid on the rays in camera space and transforms the grid to object space by estimated pose. The transformed grid is used as both a sampling grid and a new criterion of the estimated pose. Additionally, because DProST does not require object vertices, our method can be used in a mesh-less setting by replacing the mesh with a reconstructed feature. Experimental results show that mesh-less DProST outperforms the state-of-the-art mesh-based methods on the LINEMOD and LINEMOD-OCCLUSION dataset, and shows competitive performance on the YCBV dataset with mesh data. The source code is available at https://github.com/parkjaewoo0611/DProST


翻译:从一个 RGB 图像中预测天体的 6D 形状是一项基本的计算机视觉任务。 一般来说, 变换的天顶之间的距离是用来作为提出估计方法的客观功能。 但是, 相机空间中的投影几何学没有在这些方法中加以考虑, 并导致性能退化。 在这方面, 我们提议以投影网格而不是物体的悬盘为基础, 建立一个新的表面估计系统。 我们的构成估计方法、 动态投影空间变压器网络( DProST ), 将摄像空间中的兴趣网区域本地化, 并用估计的外观转换成物体空间。 变换的电网既用作取样网, 也用作估计外观的新标准 。 此外, 由于 DProST 并不需要对象的悬浮图, 我们的方法可以在无线环境中使用, 以重塑的特性取代网格。 实验结果表明, 无色DProST 将 LINEMOD 和 LINEMOD- CLOCUSIOND 数据源码 显示YCBVVVQ/MSOD 的竞争性数据源码。

1
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员