Starting with the idea that sentiment analysis models should be able to predict not only positive or negative but also other psychological states of a person, we implement a sentiment analysis model to investigate the relationship between the model and emotional state. We first examine psychological measurements of 64 participants and ask them to write a book report about a story. After that, we train our sentiment analysis model using crawled movie review data. We finally evaluate participants' writings, using the pretrained model as a concept of transfer learning. The result shows that sentiment analysis model performs good at predicting a score, but the score does not have any correlation with human's self-checked sentiment.

8
下载
关闭预览

相关内容

狭义的情感分析(sentiment analysis)是指利用计算机实现对文本数据的观点、情感、态度、情绪等的分析挖掘。广义的情感分析则包括对图像视频、语音、文本等多模态信息的情感计算。简单地讲,情感分析研究的目标是建立一个有效的分析方法、模型和系统,对输入信息中某个对象分析其持有的情感信息,例如观点倾向、态度、主观观点或喜怒哀乐等情绪表达。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

While the general task of textual sentiment classification has been widely studied, much less research looks specifically at sentiment between a specified source and target. To tackle this problem, we experimented with a state-of-the-art relation extraction model. Surprisingly, we found that despite reasonable performance, the model's attention was often systematically misaligned with the words that contribute to sentiment. Thus, we directly trained the model's attention with human rationales and improved our model performance by a robust 4~8 points on all tasks we defined on our data sets. We also present a rigorous analysis of the model's attention, both trained and untrained, using novel and intuitive metrics. Our results show that untrained attention does not provide faithful explanations; however, trained attention with concisely annotated human rationales not only increases performance, but also brings faithful explanations. Encouragingly, a small amount of annotated human rationales suffice to correct the attention in our task.

0
5
下载
预览

The emerging technique of deep learning has been widely applied in many different areas. However, when adopted in a certain specific domain, this technique should be combined with domain knowledge to improve efficiency and accuracy. In particular, when analyzing the applications of deep learning in sentiment analysis, we found that the current approaches are suffering from the following drawbacks: (i) the existing works have not paid much attention to the importance of different types of sentiment terms, which is an important concept in this area; and (ii) the loss function currently employed does not well reflect the degree of error of sentiment misclassification. To overcome such problem, we propose to combine domain knowledge with deep learning. Our proposal includes using sentiment scores, learnt by regression, to augment training data; and introducing penalty matrix for enhancing the loss function of cross entropy. When experimented, we achieved a significant improvement in classification results.

0
3
下载
预览

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

0
10
下载
预览

As the first step to model emotional state of a person, we build sentiment analysis models with existing deep neural network algorithms and compare the models with psychological measurements to enlighten the relationship. In the experiments, we first examined psychological state of 64 participants and asked them to summarize the story of a book, Chronicle of a Death Foretold (Marquez, 1981). Secondly, we trained models using crawled 365,802 movie review data; then we evaluated participants' summaries using the pretrained model as a concept of transfer learning. With the background that emotion affects on memories, we investigated the relationship between the evaluation score of the summaries from computational models and the examined psychological measurements. The result shows that although CNN performed the best among other deep neural network algorithms (LSTM, GRU), its results are not related to the psychological state. Rather, GRU shows more explainable results depending on the psychological state. The contribution of this paper can be summarized as follows: (1) we enlighten the relationship between computational models and psychological measurements. (2) we suggest this framework as objective methods to evaluate the emotion; the real sentiment analysis of a person.

0
6
下载
预览

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

0
19
下载
预览

Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.

0
12
下载
预览

Sentiment analysis is proven to be very useful tool in many applications regarding social media. This has led to a great surge of research in this field. Hence, in this paper, we compile the baselines for such research. In this paper, we explore three different deep-learning based architectures for multimodal sentiment classification, each improving upon the previous. Further, we evaluate these architectures with multiple datasets with fixed train/test partition. We also discuss some major issues, frequently ignored in multimodal sentiment analysis research, e.g., role of speaker-exclusive models, importance of different modalities, and generalizability. This framework illustrates the different facets of analysis to be considered while performing multimodal sentiment analysis and, hence, serves as a new benchmark for future research in this emerging field. We draw a comparison among the methods using empirical data, obtained from the experiments. In the future, we plan to focus on extracting semantics from visual features, cross-modal features and fusion.

0
8
下载
预览

Sentiment analysis is essential in many real-world applications such as stance detection, review analysis, recommendation system, and so on. Sentiment analysis becomes more difficult when the data is noisy and collected from social media. India is a multilingual country; people use more than one languages to communicate within themselves. The switching in between the languages is called code-switching or code-mixing, depending upon the type of mixing. This paper presents overview of the shared task on sentiment analysis of code-mixed data pairs of Hindi-English and Bengali-English collected from the different social media platform. The paper describes the task, dataset, evaluation, baseline and participant's systems.

0
5
下载
预览

Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.

0
23
下载
预览

This project addresses the problem of sentiment analysis in twitter; that is classifying tweets according to the sentiment expressed in them: positive, negative or neutral. Twitter is an online micro-blogging and social-networking platform which allows users to write short status updates of maximum length 140 characters. It is a rapidly expanding service with over 200 million registered users - out of which 100 million are active users and half of them log on twitter on a daily basis - generating nearly 250 million tweets per day. Due to this large amount of usage we hope to achieve a reflection of public sentiment by analysing the sentiments expressed in the tweets. Analysing the public sentiment is important for many applications such as firms trying to find out the response of their products in the market, predicting political elections and predicting socioeconomic phenomena like stock exchange. The aim of this project is to develop a functional classifier for accurate and automatic sentiment classification of an unknown tweet stream.

0
3
下载
预览
小贴士
相关论文
Fine-grained Sentiment Analysis with Faithful Attention
Ruiqi Zhong,Steven Shao,Kathleen McKeown
5+阅读 · 2019年8月19日
Khuong Vo,Dang Pham,Mao Nguyen,Trung Mai,Tho Quan
3+阅读 · 2018年6月22日
Ethem F. Can,Aysu Ezen-Can,Fazli Can
10+阅读 · 2018年6月8日
Anthony Hu,Seth Flaxman
19+阅读 · 2018年5月25日
Wei Xue,Tao Li
12+阅读 · 2018年5月18日
Soujanya Poria,Navonil Majumder,Devamanyu Hazarika,Erik Cambria,Amir Hussain,Alexander Gelbukh
8+阅读 · 2018年3月19日
Braja Gopal Patra,Dipankar Das,Amitava Das
5+阅读 · 2018年3月18日
Lei Zhang,Shuai Wang,Bing Liu
23+阅读 · 2018年1月24日
Afroze Ibrahim Baqapuri
3+阅读 · 2015年9月14日
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
55+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
34+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
9+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
6+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
15+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
7+阅读 · 2018年5月6日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
22+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top