In this paper we propose a novel experimental design-based algorithm to minimize regret in online stochastic linear and combinatorial bandits. While existing literature tends to focus on optimism-based algorithms--which have been shown to be suboptimal in many cases--our approach carefully plans which action to take by balancing the tradeoff between information gain and reward, overcoming the failures of optimism. In addition, we leverage tools from the theory of suprema of empirical processes to obtain regret guarantees that scale with the Gaussian width of the action set, avoiding wasteful union bounds. We provide state-of-the-art finite time regret guarantees and show that our algorithm can be applied in both the bandit and semi-bandit feedback regime. In the combinatorial semi-bandit setting, we show that our algorithm is computationally efficient and relies only on calls to a linear maximization oracle. In addition, we show that with slight modification our algorithm can be used for pure exploration, obtaining state-of-the-art pure exploration guarantees in the semi-bandit setting. Finally, we provide, to the best of our knowledge, the first example where optimism fails in the semi-bandit regime, and show that in this setting our algorithm succeeds.


翻译:在本文中,我们提出一种新的实验性设计算法,以尽量减少在线随机线性和组合式强盗的遗憾。虽然现有文献倾向于侧重于基于乐观的算法,但在许多情况中,这些算法被证明是不最理想的。在组合半带式半带式设置中,我们表明我们的算法在计算上是有效的,只依赖于线性最大化或触摸。此外,我们通过对经验过程的想象性理论进行微小的修改,以获得规模的遗憾保证,使用高萨的动作宽度,避免浪费性结合界限。我们提供了最先进的有限时间保证,并表明我们的算法可以同时适用于土匪和半带状式反馈制度。在组合半带式半带式半带式设置中,我们表明我们的算法在计算上是有效的,只能依靠线性最大化或触觉的呼声。此外,我们证明我们的算法可以稍稍作修改后用于纯粹的探索,在半带式环境中获得最先进的纯度勘探保证。最后,我们为我们的知识提供了最佳的限定时间保证,并表明我们的知识可以同时同时应用。我们的第一个例子,即显示我们的乐观在半带式系统失败。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
42+阅读 · 2020年7月7日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月19日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员