Language embeds information about social, cultural, and political values people hold. Prior work has explored social and potentially harmful biases encoded in Pre-Trained Language models (PTLMs). However, there has been no systematic study investigating how values embedded in these models vary across cultures. In this paper, we introduce probes to study which values across cultures are embedded in these models, and whether they align with existing theories and cross-cultural value surveys. We find that PTLMs capture differences in values across cultures, but those only weakly align with established value surveys. We discuss implications of using mis-aligned models in cross-cultural settings, as well as ways of aligning PTLMs with value surveys.


翻译:语言蕴含了人们持有的社会、文化和政治价值观。以往的研究已经探讨了预训练语言模型(PTLMs)中编码的社会和潜在的有害偏见。然而,还没有系统研究探究这些模型中嵌入的不同文化背景下的价值观。在本文中,我们引入探针研究模型中嵌入的各种文化中的价值观,并检查其是否与现有的理论和跨文化价值观测量工具相符。我们发现,PTLMs 捕捉到了不同文化背景下的价值观差异,但这些差异与已有的价值观测量工具只有微弱的符合度。我们讨论了在跨文化环境中使用未对齐模型的影响,以及将PTLMs与价值观测量工具对齐的方法。

0
下载
关闭预览

相关内容

近年来,预训练模型(例如ELMo、GPT、BERT和XLNet等)的快速发展大幅提升了诸多NLP任务的整体水平,同时也使得很多应用场景进入到实际落地阶段。预训练语言模型本身就是神经网络语言模型,它的特点包括:第一,可以使用大规模无标注纯文本语料进行训练;第二,可以用于各类下游NLP任务,不是针对某项定制的,但以后可用在下游NIP任务上,你不需要为下游任务专门设计一种神经网络,或者提供一种结构,直接在几种给定的固定框架中选择一种进行 fine-tune,就可以从而得到很好的结果。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Towards Reasoning in Large Language Models: A Survey
Arxiv
0+阅读 · 2023年5月26日
Arxiv
20+阅读 · 2021年9月21日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员