Deeper and wider CNNs are known to provide improved performance for deep learning tasks. However, most such networks have poor performance gain per parameter increase. In this paper, we investigate whether the gain observed in deeper models is purely due to the addition of more optimization parameters or whether the physical size of the network as well plays a role. Further, we present a novel rescaling strategy for CNNs based on learnable repetition of its parameters. Based on this strategy, we rescale CNNs without changing their parameter count, and show that learnable sharing of weights itself can provide significant boost in the performance of any given model without changing its parameter count. We show that small base networks when rescaled, can provide performance comparable to deeper networks with as low as 6% of optimization parameters of the deeper one. The relevance of weight sharing is further highlighted through the example of group-equivariant CNNs. We show that the significant improvements obtained with group-equivariant CNNs over the regular CNNs on classification problems are only partly due to the added equivariance property, and part of it comes from the learnable repetition of network weights. For rot-MNIST dataset, we show that up to 40% of the relative gain reported by state-of-the-art methods for rotation equivariance could actually be due to just the learnt repetition of weights.


翻译:深层和广度的CNN已知能为深层学习任务提供更好的业绩。 然而, 大部分这类网络的每个参数的增益都差。 在本文中, 我们调查深层模型中观察到的增益是否纯粹因为增加了更多优化参数, 或网络的物理大小也发挥了一定的作用。 此外, 我们为CNN提出了一个基于可学习的重复参数的新颖的调整战略。 基于这一战略, 我们重新提升CNN的比重, 不改变参数计数, 并显示可以学习的分量本身可以大大提升任何特定模型的性能, 而不会改变参数的计数。 我们显示, 重力的小型基础网络在重新标度时, 能够提供与深度网络的低至6%优化参数的更深网络相近的性能。 权重共享的相关性通过群体- QNCNN( CNN) 实例进一步得到进一步强调。 我们显示,在常规CNNCN( CNN) 的分类问题中, 群体- 变异性CNNNNNCN(S) 所取得的重大改进只能部分是由于增加了变异性属性,, 而部分是由于网络重度的特性的特性的特性的特性的特性, 部分来自网络重度的可学习重重度的重度的重度的重度的重度的重度的重度的重度的重度的重度。

0
下载
关闭预览

相关内容

再缩放是一个类别不平衡学习的一个基本策略。当训练集中正、反例数据不均等时,令m+表示正例数,m-表示反例数,并且需对预测值进行缩放调整。
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
专知会员服务
59+阅读 · 2020年3月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
4+阅读 · 2020年3月27日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员