A family of leaderless, decentralized consensus protocols, called Snow consensus was introduced in a recent whitepaper by Yin et al. These protocols address limitations of existing consensus methods, such as those using proof-of-work or quorums, by utilizing randomization and maintaining some level of resilience against Byzantine participants. Crucially, Snow consensus underpins the Avalanche blockchain, which provides a popular cryptocurrency and a platform for running smart contracts. Snow consensus algorithms are built on a natural, randomized routine, whereby participants continuously sample subsets of others and adopt an observed majority value until consensus is achieved. Additionally, Snow consensus defines conditions based on participants' local views and security parameters. These conditions indicate when a party can confidently finalize its local value, knowing it will be adopted by honest participants. Although Snow consensus algorithms can be formulated concisely, there is a complex interaction between randomization, adversarial influence, and security parameters, which requires a formal analysis of their security and liveness. Snow protocols form the foundation for Avalanche-type blockchains, and this work aims to increase our understanding of such protocols by providing insights into their liveness and safety characteristics. First, we analyze these Snow protocols in terms of latency and security. Second, we expose a design issue where the trade-off between these two is unfavorable. Third, we propose a modification of the original protocol where this trade-off is much more favorable.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月17日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年2月17日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
13+阅读 · 2021年5月25日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员