This paper investigates the parameter space of machine learning (ML) algorithms in aggravating or mitigating fairness bugs. Data-driven software is increasingly applied in social-critical applications where ensuring fairness is of paramount importance. The existing approaches focus on addressing fairness bugs by either modifying the input dataset or modifying the learning algorithms. On the other hand, the selection of hyperparameters, which provide finer controls of ML algorithms, may enable a less intrusive approach to influence the fairness. Can hyperparameters amplify or suppress discrimination present in the input dataset? How can we help programmers in detecting, understanding, and exploiting the role of hyperparameters to improve the fairness? We design three search-based software testing algorithms to uncover the precision-fairness frontier of the hyperparameter space. We complement these algorithms with statistical debugging to explain the role of these parameters in improving fairness. We implement the proposed approaches in the tool Parfait-ML (PARameter FAIrness Testing for ML Libraries) and show its effectiveness and utility over five mature ML algorithms as used in six social-critical applications. In these applications, our approach successfully identified hyperparameters that significantly improve (vis-a-vis the state-of-the-art techniques) the fairness without sacrificing precision. Surprisingly, for some algorithms (e.g., random forest), our approach showed that certain configuration of hyperparameters (e.g., restricting the search space of attributes) can amplify biases across applications. Upon further investigation, we found intuitive explanations of these phenomena, and the results corroborate similar observations from the literature.


翻译:本文调查机器学习算法在加重或减轻公平性错误方面的参数空间。 数据驱动软件越来越多地应用于社会关键应用中,确保公平性至关重要。 现有方法侧重于通过修改输入数据集或修改学习算法来解决公平性错误。 另一方面, 选择超参数可以对 ML 算法提供更精细的控制, 可能会促成一种不那么具有侵扰性的方法来影响公平性。 超参数能够扩大或抑制输入数据集中存在的歧视吗? 我们如何帮助程序设计者发现、理解和利用超参数应用的作用来提高公平性? 我们设计三种基于搜索的软件测试算法, 以发现超参数空间的精确性边界。 我们用这些算法补充了这些算法, 解释这些参数在改善公平性方面的作用。 我们在Parfait- ML 工具( Parameter FAIrness 法, ML 随机性测试) 中采用的方法, 并显示它在六种社会临界性应用中所使用的五种成熟 ML 算法中的有效性和实用性。 在这些应用中, 我们的精确性, 成功地展示了我们的某些方法。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员