Standard dynamics models for continuous control make use of feedforward computation to predict the conditional distribution of next state and reward given current state and action using a multivariate Gaussian with a diagonal covariance structure. This modeling choice assumes that different dimensions of the next state and reward are conditionally independent given the current state and action and may be driven by the fact that fully observable physics-based simulation environments entail deterministic transition dynamics. In this paper, we challenge this conditional independence assumption and propose a family of expressive autoregressive dynamics models that generate different dimensions of the next state and reward sequentially conditioned on previous dimensions. We demonstrate that autoregressive dynamics models indeed outperform standard feedforward models in log-likelihood on heldout transitions. Furthermore, we compare different model-based and model-free off-policy evaluation (OPE) methods on RL Unplugged, a suite of offline MuJoCo datasets, and find that autoregressive dynamics models consistently outperform all baselines, achieving a new state-of-the-art. Finally, we show that autoregressive dynamics models are useful for offline policy optimization by serving as a way to enrich the replay buffer through data augmentation and improving performance using model-based planning.


翻译:连续控制的标准动态模型使用进化前的计算方法预测下一个状态和奖赏的有条件分布, 以当前状态和行动来预测下一个状态和奖赏的有条件分布。 这种建模选择假设下一个状态和奖赏的不同维度由于当前状态和行动而有条件地独立, 并可能因为完全可见的物理模拟环境包含确定性过渡动态这一事实而驱动。 在本文中, 我们质疑这一有条件的独立假设, 并提议一个表达式自动递减动态模型的组合, 这些模型产生下一个状态的不同维度, 并按前几个维度顺序进行奖赏。 我们证明, 自动递增动态模型的确在延缓冲过渡时, 超越了日志上的标准向前模式。 此外, 我们比较了基于不同模型和无模型的离政策评价方法, 也就是一个离线 MuJoco 数据集的套件, 并发现, 自动递增性动态模型持续超越所有基线, 实现新的状态- 艺术。 我们证明, 自动递增性动态模型在延缩政策性优化过程中, 以缓冲性模型为更新性, 以更新性模型, 更新性模型, 更新性模型, 更新性模型, 更新性模型, 更新性模型, 更新性模型, 更新到 更新到 更新性模型, 更新性模型, 更新到 更新到 更新到 更新性 更新性 更新性 更新性 更新性 升级性 更新性 优化性 优化性模型, 更新性 优化 优化性 优化性 更新性 优化性 优化性 优化性 优化性 。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
60+阅读 · 2020年12月11日
最新《Transformers模型》教程,64页ppt
专知会员服务
279+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月15日
Arxiv
5+阅读 · 2020年6月16日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
60+阅读 · 2020年12月11日
最新《Transformers模型》教程,64页ppt
专知会员服务
279+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员